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ABSTRACT

We live in a world where many objects cannot be imaged directly and hence rely on

reconstruction algorithms to solve the corresponding inverse imaging problems. However,

lots of information is contaminated or even lost when samples are collected by imaging

devices, so that the resulting inverse problem is ill-posed and challenging to solve. As the

recorded photon arrivals by the sensor are often assumed to follow Poisson distributions,

algorithms for solving Poisson inverse problems are crucial. This thesis tackles two appli-

cations where Poisson inverse problems arise: phase retrieval and single photon emission

computerized tomography (spect).

For phase retrieval, we propose novel optimization algorithms working in low-count

regimes, including a novel majorize-minimize (mm) algorithm, a modified Wirtinger flow

algorithm using the observed Fisher information for step size and a generative image prior

based on score matching. Our proposed algorithms lead to faster convergence rate and

improved reconstruction quality evaluated both qualitatively and quantitatively.

For spect imaging, we focus on deep learning (dl) solutions including: 1) We pro-

pose end-to-end training of unrolled iterative convolutional neural network (cnn) using

our memory efficient Julia toolbox for spect image reconstruction. 2) We propose a dl

algorithm for joint dosimetry estimation and image deblurring for estimating patient’s

absorbed dose-rate distribution in radionuclide therapy. 3) We propose unsupervised

coordinate-based learning for predicting missing spect projection views.

xvii



CHAPTER 1

Introduction

Imaging has a rich historical background and plays a vital role in various fields, including

everyday applications for consumers, medical diagnostics [187], and astronomical research

[168]. Continuous effort from researchers and engineers have been contributed to improv-

ing imaging techniques and obtain higher-quality images. One area of focus in the broad

imaging field is computational imaging, which involves situations where direct camera

imaging of objects (such as nano-structures or body organs) is not feasible. Instead, mea-

surements are collected using imaging devices and the object needs to be reconstructed

from these measurements. This process poses an inverse problem in imaging that can be

challenging due to resource limitations of the systems involved.

One of challenges in inverse problem solving is the measurements are susceptible to

noise corruption. This is because, the image sensors quantify the incident scene irradi-

ance by tallying the discrete photon count within a specific period. Digital sensors use

the photoelectric effect to convert photons into electrons, while film-based sensors rely

on photosensitive chemical reactions. In both scenarios, due to individual photon arrivals

being independent and random, there exists inherent uncertainty known as Poisson pro-

cesswhich is signal-dependent and intrinsic to the underlying signal itself [91]. The signal-

independent zero-mean additive Gaussian model is commonly used as an approximation

for image noise. However, this model may not accurately represent the noise character-

istics of imaging systems, particularly in low photon count scenarios. In such cases, the

Poisson noise model, which takes into account photon noise statistics, may be a more

suitable choice in such imaging applications.

Perhaps there are many applications that fall under the category of inverse problems

considering Poisson noise statistics. This thesis primarily focuses on phase retrieval and

single photon emission computerized tomography (spect). Phase retrieval is an essential

problem in many optical imaging applications, as many imaging devices (e.g., ccd cam-

eras) can record only the magnitude (or square of magnitude) of signals and the phase

information is lost. For example, in coherent diffractive imaging (cdi), a coherent beam
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source illuminates a sample of interest and a reference. When the beam hits the sample,

it generates secondary electromagnetic waves that propagate until they reach a detector.

By measuring the photon flux, the detector can capture and record a diffraction pattern.

This pattern is roughly proportional to the square of Fourier transform magnitude of elec-

tric field associated with the illuminated objects [12, 13]. Recovering the structure of the

sample from its diffraction pattern is a nonlinear Poisson inverse problem known as phase

retrieval.

spect is a widely used nuclear imaging technique that provides visualizations of func-

tional processes within the human body [166]. It plays a crucial role in assessing bodily

functions, diagnosing diseases, and guiding treatment decisions. The spect procedure in-

volves injecting a radioactive tracer into the bloodstream, which then gets taken up by

specific tissues. Radioactive tracers consist of carrier molecules that are tightly bonded

to radioactive atoms. The selection of these carrier molecules depends on the specific

purpose of the scan, with some tracers utilizing molecules that interact with particular

proteins or sugars in the body and even incorporating the patient’s own cells. The tracer

emits gamma rays that are detected by a gamma camera and converted into electrical sig-

nals. The gamma camera system is mounted on a rotating gantry that allows the detectors

to move in an approximately circular motion around the patient lying on an examination

bed. Some newer systems
1
are arranged in a ring geometry surrounding the patient. Thus

the spect imaging system captures a 3-dimensional images depicting the distribution of

the radioactive tracer throughout various bodily tissues and organs.

However, as mentioned earlier, obtaining high-quality measurements in imaging ac-

quisition can be challenging, making it difficult to solve the corresponding inverse problem.

For example, in spect, the measurement quality is known to be limited by the scattering

events (e.g., Compton scatter and coherent scatter), resolution of the collimator as well as

patient motions during acquisition. All of these systems are further subject to (Poisson)

noise and other nonidealities. These physical effects limit the quality of the measured sam-

ples and are almost unavoidable at a hardware level. Fortunately, there is much space to

improve the image quality other than hardware level. Computational imaging techniques

allow us to optimize an inverse problem by mathematically modeling the imaging system.

Advances in computational imaging algorithms can potentially overcome challenges in

the physical domain and enhance reconstruction quality. Therefore, using computational

imaging algorithms to solve such Poisson inverse problems as discussed earlier is the cen-

tral goal of this thesis.

1
https://www.gehealthcare.com/products/molecular-imaging/starguide
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A common way in computational imaging to solve Poisson inverse problems is to pose

the reconstruction as an optimization problem consisting of a data-fidelity term associ-

ated with a Poisson likelihood, encouraging our reconstruction to be consistent with the

measured samples, and a regularization term, enforcing our measurement-independent

expectations or assumptions about the class of images we are reconstructing. Developing

an effective regularizationmethod is challenging, as it must be both flexible enough to rep-

resent all possible true images, yet be discriminating enough to reject noise and artifacts.

Regularization reflects our prior beliefs or assumptions about the true images, for example,

that an image having repeated textures can be represented with reduced dimensionality.

As a result, a good regularizer can be designed to encourage lower-dimensional structure.

As machine learning becomes popular in many fields, many image regularization meth-

ods are data-driven. These regularizers may not be explicit and are instead learned from

a dataset of various images and are expected to be generalizable to unseen images. Such

regularizers can range from simple, linear models (e.g., total variation (tv)) to complex

and nonlinear methods such as deep learning (dl) algorithms based on neural networks.

The emergence of large-scale data analysis and significant advancements in comput-

ing capabilities have resulted in machine learning methodologies being effective for solv-

ing Poisson inverse problems. Particularly, dl has emerged as a widely used approach

that has proven successful across various fields. Unlike traditional machine learning ap-

proaches that rely heavily on feature engineering and manual extraction of relevant infor-

mation from input data [204], dlmethods are able to automatically learn intricate patterns

and representations directly from raw data through a process called model training. With

its remarkable capacity due to its millions or even trillions of learnable parameters, dl

methods have led to significant progress in solving Poisson inverse problems in computa-

tional imaging, however, they also leave more open research questions and directions for

future works.

1.1 Contributions

The contributions of works in this thesis can be summarized as follows.

1. Phase Retrieval.

• We develop algorithms to address the challenges of low-count regimes in the

Poisson phase retrieval problem. Our proposed approach involves a modified

Wirtinger flow (wf) algorithm that uses a step size determined by the observed
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Fisher information, as well as a novel curvature for majorize-minimize algo-

rithms that incorporates a quadratic majorizer. Through simulated experimen-

tation with different system matrices, we demonstrate the effectiveness and

convergence properties of our methods. The simulation results reveal that our

approaches not only enable successful recovery in extremely low-count sce-

narios but also outperform previous methods in terms of speed of convergence.

This work is based on published papers [149, 150].

• In addition, we investigate situations where the measurements are influenced

by a mixture of Poisson and Gaussian noise. We introduce a novel method

called “AWFS” that employs accelerated wf with a score function as a gener-

ative prior. We provide theoretical analysis to demonstrate the convergence

guarantee of the proposed algorithm at critical points. Results from simula-

tions illustrate that our approach improves reconstruction quality in terms of

both visual perception and numerical assessment. This work is based on [96,

148].

2. spect Imaging.

• We develop an efficient Julia toolbox for modeling spect forward-backward

projectors
2
. This toolbox uses multi-threading and in-place operations to en-

able parallel computing and reduce memory allocations. As a result, our pro-

posed spect projector allows for efficient backpropagation during the train-

ing of deep learning regularized iterative algorithms in an end-to-end manner.

This approach has shown potential for producing higher quality reconstruc-

tions compared to methods without end-to-end training. This work is based

on published paper [145].

• We propose a deep neural network (DblurDoseNet) for joint dosimetry estima-

tion and image deblurring after spect reconstruction that produces accurate

dose-rate distribution estimates as well as compensating for spect resolution

effects. Evaluations both on phantoms and patients demonstrate that the pro-

posed DblurDoseNet can outperform the current gold standard, i.e., Monte

Carlo (mc) based methods, and is also fast enough for real-time clinical use in

radionuclide therapy dosimetry for treatment planning [147, 143].

• We propose a neural network with unsupervised coordinate-based learning to

predict missing spect projections before reconstruction. Our method aims to

2
https://github.com/JuliaImageRecon/SPECTrecon.jl
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decrease the acquisition time for spect by only obtaining a subset (e.g., one

fourth) of all projections. Our unsupervised approach achieves improved qual-

ity in image reconstruction when compared to linear interpolation methods

used for the prediction of absent projection views. This work is based on pub-

lished abstract [151].

1.2 Outline

Chapter 2 provides the necessary background on the mathematical frameworks we use

for modelling Poisson inverse problems. It introduces the details of phase retrieval, spect

image reconstruction and dosimetry. Chapter 3 introduced our proposed algorithms for

the phase retrieval problem. Chapter 4 focuses on dl solutions in spect imaging, from ac-

qusition, reconstruction, to post processing. Chapter 5 discusses current challenges faced

and explores potential avenues for future research. One of the major challenges is address-

ing the limited amount of training data for large 3D images, prompting the exploration

of techniques like transfer learning and active learning. Additionally, we delve into top-

ics such as generative AI, multi-modality imaging, and optimization approaches from a

computational perspective. Chapter 6 concludes this thesis.

• To improve the resolution of spect images while not significantly increasing the

computational cost, we propose a novel and efficient image super-resolution recon-

struction network (ESR-Net) that can improve the resolution by training a deep-

learning regularizer using true activity maps having finer voxel sizes, while main-

taining the computational efficiency by computing the forward and backward pro-

jections in coarser voxel sizes through downsampling and upsampling.

• Unsupervised learning methods for image denoising are receiving more attentions

recently.We propose to denoise the low-count spect projectionswith unsupervised

learning methods and investigate the improvement for the reconstruction.

• Invertible neural network (INN) models are becoming popular in solving inverse

problems. Compared to the classical neural networks that attempt to solve the am-

biguous inverse problem directly, INNs are able to learn it jointly with the well-

defined forward process. As directly training the INN to learn the whole physi-

cal process can be difficult, we propose a novel framework known as residual INN

(RINN) that first uses an analytical projector to solve the inverse problem, providing

a reasonable posterior estimate that we can use for residual learning. Then we train
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the RINN to only learn the difference between the true image and the reconstruction

from the analytical projector.

• In addition, stochastic em with variance reduction (SVREM) algorithm has been

proposed and implemented for pet image reconstruction and is reported to have

faster convergence rate than the traditional methods such as osem. Extending such

methods to spect could be an interesting direction for future work.

• Finally, neural radiance field (NeRF) models are widely used in computer vision

field for view synthesis. They also have been investigated for sparse-view ct image

reconstruction. Applying NeRF to spectwould be interesting and worth investigat-

ing.

The appendix provides more in depth algorithmic detail than is provided in the main

chapters as well as other supplementary materials. In particular, Appendix A derives an

improved curvature of the quadratic majorizer in the mm algorithm for Poisson phase

retrieval in Chapter 3. Appendix B derives and analyzes the ucrlb for the wf algorithm

in Chapter 3. Appendix C provided detailed analysis on the critical-point convergence

guarantee of the “AWFS” algorithm in Chapter 3.
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CHAPTER 2

Background

This chapter first introduces inverse problems mathematically and presents a generic

framework for addressing such problems. We then present the background for phase re-

trieval and quantitative spect imaging in sufficient detail as two areas where inverse

problems arise.

2.1 Inverse Problems

When indirectly collecting samples of some signals (or images) of interest, what we mea-

sure is often a function of that signal, be it blur, missing data, a projection, or something

more complex. For the linear case, we can describe how the discrete measurements y re-

late to the underlying (possibly continuous) true signal xtrue, with the following equation:

y ∼ Poisson(Axtrue + r̄). (2.1)

Here, A represents a linear measurement model and r̄ denotes the mean background

events such as scatters. Here we assume the noise vector elements have independent Pois-

son distributions, which is a realistic model for many applications. Estimating xtrue from

y and A is known as an inverse problem, and it is challenging because one usually does

not have sufficient information to exactly recover xtrue.

To estimate xtrue from y following (2.1), classically, filtering-based methods were de-

veloped, such as filtered back projection for ct [253] orWiener filtering [36] for denoising

problems. These algorithms are fast and efficient, but they do not model the physics of

imaging systems so that the resulting reconstructed images often have insufficient quality

for practical use.

Model-based image reconstruction (mbir) methods, instead, first construct a mathe-

matical model to represent the physics of imaging system, then solve an optimization

problem built on top of that model. mbir is a family of nonlinear reconstruction methods
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that has shown to be both flexible to a variety of inverse problems, and able to produce

improved quality estimates. The following section discusses it in more detail.

2.1.1 Model-Based Image Reconstruction

From the Bayesian statistics perspective, the reconstruction problem can be described as

maximizing the probability of our estimate given our measurements, i.e., the posterior

distribution p(x|y). Using Bayes’ rule, we can rewrite the posterior as

p(x|y) = p(y|x) p(x)
p(y)

. (2.2)

Thus, tomaximize the left-hand side, we equivalentlymaximize the right-hand side.When

maximizing w.r.t. x, we can drop p(y) as a constant scaling, and apply − log(·) to write

the problem as

x̂ = argmin
x
− log(p(y|x))− log(p(x)) . (2.3)

If the term log(p(x)) is absent or x is assumed to follow a uniform distribution so that

log(p(x)) is a constant, (2.3) reduces to mle, which is a special case of an extremum

estimator from the frequentist perspective. In the context of map estimation, the first term

is the negative log-likelihood and encodes the measurement dependence of our estimate.

In the case of independent Poisson measurements as in (2.1), its negative log-likelihood is

proportional to

1′(Ax+ r̄)− y′ log(Ax+ r̄) .

The second term, referred to as the negative log-prior, or just simply the prior, encodes

our preconceived assumptions about which signals x are more probable irrespective of

measurements.

mbir methods relax the probabilistic interpretation of (2.3). To distinguish from the

map interpretation, we refer to the first term as the data-fidelity term instead of the neg-

ative log-likelihood, and the second term as regularization, instead of a prior. These map

terms are often used informally though, despite the lack of statistical interpretability of

many regularization functions. Thus, in mbir a common estimation problem for (2.1)may

be posed as

x̂ = argmin
x

f(x) + R(x; β), f(x) ≜ 1′(Ax+ r̄)− y′ log(Ax+ r̄), (2.4)

where R(·) is the regularization function penalizing deviation from our signal model, and

β is a hyperparameter representing a trade-off between fit to data and R(·).
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As a concrete example, we could model a signal following Gaussian distribution with

the ℓ2 norm regularizer, R(x) = 1
2
∥x∥22. Such an estimate often has a closed-form solu-

tion. If that solution is expensive to compute directly, it can be obtained via optimization

algorithms such as gradient-based methods.

Developing effective signal and image models and corresponding regularization func-

tions is challenging. Ideally, such models should be both broad enough to describe all

plausible latent images, while discriminating enough to reject noise and artifacts.

2.1.2 Deep Learning for Inverse Problems

It can be difficult to come up with an explicit regularizer that can describe all plausible

true images, so an option is to train a neural network to implicitly model the distribution

of the latent images. Then we can balance the estimation between the likelihood and the

output of neural network by various methods such as

x̂ = argmin
x

f(x) +
β

2
∥x− gθ(x)∥22, (2.5)

where f(x) is defined in (2.4), gθ denotes a class, or an architecture, of functions param-

eterized by weights θ. One can train gθ by minimizing some loss function that provides

a metric of the quality of x̂ compared to the true signal xtrue. As (2.5) often does not

have a closed-form solution, generally it is is minimized via some variant of stochastic

(sub)gradient descent.

In artificial neural networks, the architecture gθ is designed as a composition of simpler

functions, or layers that has learnable parameters, e.g., fully connected layers, convolu-

tional layers; and other untrained layers such as pooling layers and activation functions

like relu. Optimizing the parameters in such a layered structure requires efficient com-

putation of parameter gradients, which can be achieved by applying the chain rule and

backpropagating the results to earlier layers.

Combining different layers with different operations results in numerous possible

neural-network architectures. For example, adding the output of previous layer to the

current layer leads to the famous “ResNet” [92]; combining a series of downsampling and

upsampling layers with concatenation on the channel dimension results in a U-shape net-

work known as U-Net [201]. These deep neural networks are reported to provide sota

performance on many imaging tasks. For example, U-Net achieved sota accuracy on the

2012 International Symposium on Biomedical Imaging (ISBI) challenge for segmentation

of neuronal structures in electron microscopic stacks [201].
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Despite these successes, modern deep learning methods have several disadvantages

when it comes to solving inverse problems. First, it can be computationally expensive and

memory hungry to backpropagate through the system matrix in unrolled iterative algo-

rithms; and any change to the algorithm may require retraining the network. Another

weakness is the concern of interpretability, i.e., what kind of features that the neural net-

work learns from the data. Such features can be hard to visualize for a deep network, e.g.,

having millions or billions of parameters. Additionally, deep learning methods can gener-

ate unexpected and even unrealistic results, for example, Nataraj and Otazo [181] found

that in some test cases of mri brain scans with different pathologies, the trained networks

removed some important organs such as very large tumors because they rarely showed

up in training data.

In light of these strengths and weakness, one must keep in mind that the “best” algo-

rithm may not exist, so that an algorithm that is adaptive to different scenarios can be

more favorable, e.g., having some tuning parameters that can be left to users to optimize.

For example, in deep learning regularized mbir, if one does not trust the neural network,

one can set the regularization parameter in (2.5) to zero so that the algorithm reduces to

traditional mle.

2.2 Phase Retrieval
1

Phase retrieval is an inverse problem with many applications in engineering and applied

physics [104, 90], including radar [106], X-ray crystallography [175], astronomical imaging

[51], Fourier ptychography [17, 278, 260, 234] and cdi [134]. In these applications, the

sensing systems can only measure the magnitude (or the square of the magnitude) of the

signal, which leads to

yi ∼ p
(
|a′

ix|2 + bi
)
, (2.6)

where p(·) denotes a probability density function. Here, a′
i ∈ CN

denotes the ith row

of the system matrix A ∈ CM×N
where i = 1, . . . ,M , and bi ∈ R+ denotes a known

mean background signal for the ith measurement, e.g., as arising from dark current [220].

Fig. 2.1 illustrates the phase retrieval problem.

Usually, the sensing vectors {a′
i} are assumed to follow some structures, e.g., iid ran-

domGaussian, or the coefficients of dft. For the randomGaussian case, Candes et al. [26]

showed thatM ∼ O(N logN) samples are sufficient to recover the signal; Bandeira et al.

[9] posed a conjecture thatM = 4N − 4 is necessary and sufficient to uniquely recover

1
This section is largely taken from [150].
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fig 2.1 – Illustration of the phase retrieval problem.

the original signal from noiseless measurements. However, under very low-count regimes

with noise, a much largerM is often needed to successfully reconstruct the signal. Addi-

tionally, whenA corresponds to a Fourier transform, the measurements describe only the

magnitudes of a signal’s Fourier coefficients, and one usually does not have enough infor-

mation to recover the signal; while the Fourier transform is injective, its point-wise abso-

lute value is not [10]. So a common approach is to create redundancy in the measurement

process by additional illuminations of the object using different masks [25]. Banderia et al.

[10] showed that by using a set of O(logM) random masks can increase the probability

of recovering the signal.

Noise in the acquired measurements is another factor that has significant effects to

the reconstruction quality. As the Gaussian noise and Poisson noise are the most common

ones arise in imaging systems, we present an overview of phase retrieval with these noise

models next.

2.2.1 Gaussian Phase Retrieval

In many previous works, the measurement vector y ∈ RM
was assumed to have statisti-

cally independent elements following Gaussian distributions with variance σ2
:

yi ∼ N (|a′
ix|2 + bi, σ

2). (2.7)

For this Gaussian noise model, the mle of x corresponds to the following non-convex

optimization problem

x̂ = argmin
x∈FN

g(x), g(x) ≜
∑
i

∣∣∣yi − bi − ∣∣a′
ix
∣∣2∣∣∣2. (2.8)
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Here we overload the notation g (different from g in (2.5)). The field F = R or F = C
depending on whether x is known to be real or complex. To solve (2.8), numerous algo-

rithms have been proposed. One approach reformulates (2.8) by “matrix lifting” [26, 27,

214], where a rank-one matrix is introduced and if the rank constraint is relaxed, then

the transformed problem is convex and can be solved by sdp. The sdp based algorithms

can yield robust solutions but can be computationally expensive, especially on large-scale

data. Another approach is wf [27] and its variants [110, 24, 224] that descend the cost

function with a (projected/thresholded/truncated) Wirtinger gradient using an appropri-

ate step size. In the classic wf algorithm [27], the gradient
2
for the Gaussian cost function

(2.8) is

∇g(x) = 4A′ diag{|Ax|2 − y + b}Ax. (2.9)

To descend the cost function, Candes et al. [27] used a heuristic where the step size µ

is rather small for the first few iterations and gradually increases as the iterations pro-

ceed. The intuition is that the gradient is noisy at the early iterations so a small step size

is preferred. A drawback of this approach is that one needs to select hyper-parameters

that control the growth of µ. An alternative approach is to perform backtracking for µ at

each iteration [192], i.e., by reducing µ until the cost function decreases sufficiently. This

approach guarantees decreasing the cost functionmonotonically but can increase the com-

pute time of the algorithm due to the variable number of inner iterations. Jiang et al. [110]

derived the optimal step size for (2.8) and showed faster convergence rate than the heuris-

tic step size when measurements are noiseless or follow iid Gaussian distribution. Cai et

al. [24] proposed thresholded wf and showed it can achieve the minimax optimal rates

of convergence, but that scheme requires an appropriate selection of tuning parameters.

Soltanolkotabi [224] reformulated the phase retrieval problem as a nonconvex optimiza-

tion problem and proved that projected Wirtinger gradient descent, when initialized in

a neighborhood of the desired signal, has a linear convergence rate. However, it can be

difficult to find an initial estimate satisfying the conditions mentioned in [224].

An alternative to cost function (2.8) (aka intensity model) is the magnitude model that

works with the square root of y. In particular, Gerchberg and Saxton [75] proposed an

algorithm known as gs that introduced a new variable θ to represent the phase, leading

2
If x ∈ RN

, then all gradients w.r.t. x should be real and hence use only the real part of expressions like

(2.9).
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to the following joint optimization problem

x̂, θ̂ = argmin
x∈FN ,θ∈CN

∥∥∥Ax− diag
{√

max (y − b,0)
}
θ
∥∥∥2
2
,

subject to |θi| = 1, i = 1, ..., N. (2.10)

The square root in (2.10) is reminiscent of the Anscombe transform that converts a Poisson

random variable into another random variable that approximately has a standard Gaus-

sian distribution. However, that approximation is accurate when the Poisson mean is suf-

ficiently large (e.g., above 5), whereas we focuses on the lower-count regime in this work.

The convergence and recovery guarantees of gs were studied in [182, 243]. In addition to

matrix-lifting, wf, gs and their variants, several other algorithms have been proposed to

solve phase retrieval problems under the assumption of the Gaussian measurement noise,

including Gauss-Newton methods [74], lbfgs updates to approximate the Hessian in the

Newton’s method [107], mmmethods [192], admm [152], and an iterative soft-thresholding

with exact line search algorithm (STELA) [266].

2.2.2 Poisson Phase Retrieval

In many low-photon count applications [232, 86, 260, 11, 238, 136, 78], especially in [78],

where 0.25 photon per pixel on average is considered, a Poisson noise model is more

appropriate:

yi ∼ Poisson(|a′
ix|2 + bi). (2.11)

mle of x for the model (2.11) corresponds to the following optimization problem

x̂ =argmin
x∈FN

f(x), f(x) ≜
∑
i

ψ(a′
ix; yi, bi),

ψ(v; y, b) ≜ (|v|2 + b)− y log
(
|v|2 + b

)
. (2.12)

Here, f(x) denotes the negative log-likelihood corresponding to (2.11), ignoring irrelevant

constants independent of x, and the function ψ(·; y, b) denotes the marginal negative log-

likelihood for a single measurement, where v ∈ C. Because |v| is real, it is helpful to
re-write ψ in the form ψ(v; y, b) = ϕ(|v|; y, b), where

ϕ(r; y, b) ≜ (r2 + b)− y log
(
r2 + b

)
, r ∈ R+. (2.13)
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One can verify that the function ϕ(r; y, b) is non-convex over r ∈ R+ when 0 < b < y.

That property, combined with the modulus within the logarithm in (2.12), makes (2.12) a

challenging optimization problem. Similar problems for b = 0 have been considered pre-

viously [42, 17, 25, 39, 30], but many optical sensors also have Gaussian readout noise [278,

116] so that the mean background signal is unlikely to be zero. To accommodate the Gaus-

sian readout noise, a more precise model would consider a sum of Gaussian and Poisson

noise. However, the log likelihood for a Poisson plus Gaussian distribution is complicated,

so a common approximation is to use a shifted Poisson model [219] that also leads to the

cost function in (2.12). An alternative to the shifted Poisson model could be to work with

an unbiased inverse transformation of a generalized Anscombe transform approximation

[163, 234] or use a surrogate function that tightly upper bounds the challenging Poisson

plus Gaussian maximum likelihood objective function and apply an mm algorithm.

This work focuses on Poisson phase retrieval algorithms working in very low-count

regimes that are discussed in more detail in Chapter 3.

2.3 Quantitative spect Imaging

spect is a nuclear medicine technique that images spatial distributions of radioisotopes,

by detecting gamma-rays that escape from the patient’s body. A rotating gamma camera

is used to acquire data for computed tomography imaging. spect plays a pivotal role in

clinical diagnosis such as cardiac vascular diseases [34], tumor detection [189], and also to

estimate radiation absorbed doses in nuclear medicine therapies [62]. For example, quan-

titative spect imaging with Lutetium-177 (
177

Lu) in targeted radionuclide therapy (such

as
177

Lu DOTATATE) is important in determining dose-response relationships in tumors

and holds great potential for dosimetry-based individualized treatment [103]. Quantita-

tive Yttrium-90 (
90
Y) SPECT bremsstrahlung imaging is also valuable for estimating the

activity distribution after radioembolization procedures for safety and absorbed dose ver-

ification [270].

2.3.1 spect Physics

Most spect systems are based on Gamma camera detectors that rotate around the patient

body in circular or contoured orbit, as shown in Fig. 2.2. Each detector head is equipped

with a parallel-hole collimator and can rotate independently to sample different projec-

tion angles, enabling a projection dataset to be acquired for tomographic reconstruction.

14



(a)

(b)

fig 2.2 – Illustration of circular (top) and contoured (bottom) orbits. Figure adapted from

[40, p. 280].

Ideally, the signal recorded by one detector pixel at a certain rotation angle would be lin-

early proportional to the amount of activity contained along the ray through the patient

corresponding to the location of that pixel. In practice, however, this ideal is not achieved

due to the imaging system physics and statistics. For example, for a parallel-beam colli-

mator shown in Fig. 2.3, its line spread response ideally would be an extended cylinder

but actually it resembles a diverging cone [40, p. 285]. Furthermore, scattering events can

be estimated only approximately, which can have a significant effect on the quality of the

reconstructed image. Hence for almost all mbir algorithms, a simplified spect imaging

model is used, as shown in Fig. 2.3, that models parallel-beam collimators, with depth-

dependent attenuation and collimator point spread response, and any nonidealities are

not modelled.
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fig 2.3 – spect imaging model for parallel-beam collimators, with depth-dependent at-

tenuation and collimator point spread response.

2.3.2 Scatter

Scattering is one way of interaction of radiation with matter. For example, Compton scat-

tering is a “collision” between a photon and an electron of an atom; coherent scattering

occurs between a photon and an atom as a whole. In that case, the atom often has a great

mass so that the photon is deflected with essentially no loss of energy.

Scattered photons cannot be overlooked because they can be as large as 40% of non-

scattered photons [40, p. 297], so that the presence of scattered events can result in reduced

image contrast and loss of important details. Therefore, methods for estimating scatters

are essential in spect reconstruction.

One of the most commonly used methods for scatter correction is to simultaneously

acquire counts with a photopeak window and two neighbouring scatter windows (known

as the tew approach). Then the acquired scatters are multiplied by a weighting factor

that is determined experimentally. The tew method is fast but can be inaccurate, espe-

cially for
90
Y bremsstrahlung photons where the energy spectrum is continuous. Another

method is running mc simulations that fully model the physics of photon transport in

the patient and camera and hence can provide more accurate scatter estimation; but that

method requires running sufficiently large number of histories to generate results with

low uncertainty, which can be computationally expensive. Several works proposed to use
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a deep neural network for scatter estimation, with the measured spect emission projec-

tion and attenuation map as inputs, and showed comparably accurate results as the mc

method with faster compute time [255, 121, 109, 108].

2.3.3 Spatial Resolution

A spect camera is also known to suffer from limited spatial resolution due to the point

(line) spread response of the collimator. Such blurring effects can significantly degrade

the quality of reconstruction. For example, as shown in Fig. 2.4, the fwhm becomes very

wide at larger distances, leading to a even more ill-posed reconstruction problem to solve.

1 13

1

13

(a) 12cm

1 13

1

13

(b) 19.2cm

1 13

1

13

(c) 28.8cm

1 13

1

13

(d) 39.2cm

fig 2.4 – Point spread function at different depth locations (distance from collimator).

2.3.4 mlem and osem

Numerous reconstruction algorithms have been proposed for spect reconstruction, of

which the most popular ones are mbir algorithms such as mlem [217] and its variant

osem [98]. These methods first construct a mathematical model for the spect imaging
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system, then maximize the (log-)likelihood using an appropriate statistical noise model

(e.g., Poisson noise). In particular, the cost function for mlem has the form

f(x) ≜
M∑
i=1

h([Ax+ r̄]i; yi), h(t; y) ≜ t− y log(t), y ≥ 0, t > 0, (2.14)

where A ∈ RM×N
denotes the spect system matrix, y ∈ RM

denotes total projections

and r̄ ∈ RN
denotes the mean of background events like scatters. To make the cost func-

tion separable, we follow the derivation in [56]:

[Ax+ r̄]i =
N∑
j=1

aij(xj + γj) + r̃i

=
N∑
j=1

aij
(
x
(k)
j + γj

)
[Axk + r̄]i

 xj + γj

x
(k)
j + γj

[Axk + r̄]i +
r̃i

[Axk + r̄]i
[Axk + r̄]i,

(2.15)

where k denotes the iteration number in mlem or osem, j denotes the jth voxel; r̃i are

non-negative constants

r̃i ≜ r̄i −
N∑
j=1

aijγj ≥ 0. (2.16)

As explained in [70], γj are any (user-selected) non-negative constants that satisfy the

following constraints

N∑
j=1

aijγj ≤ r̄i, i = 1, ...,M. (2.17)
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Because h(x) is convex, using Jensen’s inequality, we have

f(x) =

M∑
i=1

h([Ax+ r̄]i; yi)

=
M∑
i=1

h

 N∑
j=1

aij

(
x
(k)
j + γj

)
[Axk + r̄]i

 xj + γj

x
(k)
j + γj

[Axk + r̄]i +
r̃i

[Axk + r̄]i
[Axk + r̄]i


≤

M∑
i=1

N∑
j=1

aij

(
x
(k)
j + γj

)
[Axk + r̄]i

h

(
xj + γj

x
(k)
j + γj

[Axk + r̄]i

)
+

r̃i
[Axk + r̄]i

h ([Axk + r̄]i)

=

N∑
j=1

M∑
i=1

aij

(
x
(k)
j + γj

)
[Axk + r̄]i

h

(
xj + γj

x
(k)
j + γj

[Axk + r̄]i

)
+

r̃i
[Axk + r̄]i

h ([Axk + r̄]i) .

(2.18)

Thus, a majorizer can be constructed as

H(x;xk) ≜
N∑
j=1

Hj(xj ;xk),

Hj(xj ;xk) ≜
M∑
i=1

aij

(
x
(k)
j + γj

)
[Axk + r̄]i

h

(
xj + γj

x
(k)
j + γj

[Axk + r̄]i

)
+

r̃i
[Axk + r̄]i

h ([Axk + r̄]i) .

(2.19)

Differentiating and setting the derivative of Hj(xj;xk) to zero leads to

0 =
∂Hj(xj;xk)

∂xj
=

M∑
i=1

aijḣ

(
xj + γj

x
(k)
j + γj

[Axk + r̄]i

)

=
M∑
i=1

aij −

(
x
(k)
j + γj

xj + γj

)
M∑
i=1

aij
yi

[Axk + r̄]i
, (2.20)

after simplification yields

M∑
i=1

aij (xj + γj) =
(
x
(k)
j + γj

) M∑
i=1

aij
yi

[Axk + r̄]i
. (2.21)

Setting γ to zero, as a common special case, leads to the following update for xk

xk+1 = xk ⊙ (A′ (y � (Axk + r̄))) � (A′1). (2.22)
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For osem, the system matrixA is split into ordered-subsets that usually correspond to a

uniform subset of view angles (roughly uniform sampling of rows of A), which leads to

faster computation at each iteration.

2.3.5 Deep Learning Regularized em

To minimize a cost function like (2.5) that has a deep learning regularizer, a common ap-

proach is to use alternating minimization. Specifically, with variable splitting u ≜ gθ(x),

one can perform the following alternating update [153]:

xk+1 = argmin
x

M∑
i=1

h([Ax+ r̄]i; yi) +
β

2
∥x− uk∥22,

uk+1 = gθ(xk+1). (2.23)

Then the derivative of the majorizer (2.20) becomes

0 =
∂Hj(xj;xk)

∂xj
=

M∑
i=1

aijḣ

(
xj + γj

x
(k)
j + γj

[Axk + r̄]i

)
+ β (xj − [uk]j)

=
M∑
i=1

aij

(
1− yi (xj + γj)

(xj + γj) [Axk + r̄]i

)
+ β (xj − [uk]j)

=
M∑
i=1

aij −
(
xj + γj
xj + γj

) M∑
i=1

aij
yi

[Axk + r̄]i
+ β (xj − [uk]j) .

Again, let

ej(xk) =
M∑
i=1

aij
yi

[Axk + r̄]i
, uj(β) =

M∑
i=1

aij − β[uk]j, (2.24)

the derivative simplifies to

βx2j + (βγj + uj(β))xj + γjuj(β)− (xj + γj) ej(xk) = 0. (2.25)

The resulting vector update is

x̂k =
1

2β

(
−u(β) +

√
u(β)2 + 4βxk ⊙ e (xk)

)
, (2.26)

where

e (xk) = A
′ (y � (Axk + r̄)) , u(β) = A′1− βuk. (2.27)
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To compute xk+1, one must substitue x̂k back into e(·) in (2.27), and repeat. Algorithm 1

summarizes the dl-regularized em algorithm.

Algorithm 1: Deep learning regularized em algorithm for spect image recon-

struction.

Input: 3D projection measurements y,
3D background measurements r̄,
system modelA, initial guess x0,

trained deep neural network gθ,
outer iterations K
for k = 0, ..., K − 1 do
uk+1 = gθ(xk)
xk+1← repeat (2.26) until convergence tolerance or maximum # of inner

iterations is reached

end

Output: xK

2.3.6 Dosimetry Estimation

Absorption of energy from ionizing radiation of radiotracers used for spect imaging or

for dosimetry can cause damage to living tissues, so it is necessary to analyze the energy

distribution in body tissues quantitatively to ensure an accurate therapeutic prescription

to tumors or to assess potential risks to normal organs [40, p. 407]. Dosimetry estimation

is also essential for clinical implementation of dosimetry-guided treatment planning in

radionuclide therapy.

Radiation dose is defined as the quantity of radiation energy deposited in absorber per

gram of absorber material. The basic unit is gray (Gy in short):

1Gy = 1 joule energy deposited per kg absorber. (2.28)

Chapter 4 discusses more details about dosimetry estimation methods and describe a new

method for accurate and computationally efficient absorbed dosimetry estimation using

a dl approach.
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CHAPTER 3

Poisson Inverse Problems in Phase Retrieval
1

3.1 Poisson Phase Retrieval in Low-count Regimes
2

3.1.1 Motivation

Existing algorithms for Poisson phase retrieval are limited in the literature. Chen and Can-

des [39] proposed to solve the Poisson phase retrieval problem byminimizing a nonconvex

functional as in the wf approach; Bian et al. [17] used Poisson mle and truncated wf in

Fourier ptychographic (FP) reconstruction. Zhang et al. [274] consider a scale square root

of (2.11) for the common case with bi = 0. Chang et al. [31] derived a tv-regularized admm

algorithm for Poisson phase retrieval and established its convergence. Recently, Fatima et

al. [69] proposed a double looped primal-dual majorize-minimize (PDMM) algorithm.

In this work, we propose novel algorithms for the Poisson phase retrieval problem

and report empirical comparisons of the convergence speed and reconstruction quality of

algorithms under a variety of experimental settings. In particular,

1. We propose a novel method for computing the step size for the wf algorithm that

can lead to faster convergence compared to empirical step size [27], backtracking

line search [192], optimal step size derived for the Gaussian noise model [110], and

lbfgs updates to approximate the Hessian in Newton’s method [107]. Moreover,

our proposed method can be computed efficiently without any tuning parameter.

2. We derive an mm algorithm with quadratic majorizer using a novel curvature. We

show theoretically that our proposed curvature is sharper than the curvature de-

rived from the upper bound of the second derivative of the Poisson maximum like-

lihood cost function.

1
This chapter is based on [149, 150, 148].

2
This section is based on [150].
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3. We present numerical simulation results under random Gaussian, canonical dft,

masked dft and empirical transmission system matrix settings for low-count data,

e.g., 0.25 photon per pixel. We show that under such experimental settings, algo-

rithms derived from the Poisson noise model produce consistently higher recon-

struction quality than algorithms derived from Gaussian noise model, as expected.

Furthermore, the reconstruction quality is further improved by incorporating regu-

larizers that exploit assumed properties of the signal.

4. We compare the convergence speed (in terms of cost function and psnr vs. time)

of wf with Fisher information with other methods for step size (backtracking line

search, optimal Gaussian) and lbfgs quasi-Newton method. We also compare the

convergence speed of regularized wf with mm and admm, using smooth regulariz-

ers such as corner-rounded anisotropic tv. For both cases, our proposed wf Fisher

algorithm converges the fastest under all system matrix settings.

Overloaded Notations:A,x, b,y used in this chapter are defined in (2.6); f(·) and ψ(·) are
defined in (2.12); ϕ(·) is defined in (2.13).

3.1.2 Methods

3.1.2.1 Wirtinger flow (wf)

This section describes the modifiedwf algorithmwith proposed step-size approach based

on Fisher information. To generalize the wf algorithm to the Poisson cost function (2.12),

the most direct approach simply replaces the gradient (2.9) by (3.1) in the wf framework

[274] and perform backtracking the find a good step size µ. We propose a faster alternative

next. We treat 0 log 0 as 0 in (2.12) because a Poisson random variable with zero mean can

only take the value 0. With this assumption, one can verify that ψ has the following well-

defined ascent direction (negative of descent direction [275]) and a second derivative:

ψ̇(v; y, b) = 2v

(
1− y

|v|2 + b

)
, v ∈ C.

ψ̈(v; y, b) = sign(v)

(
2 + 2y

|v|2 − b
(|v|2 + b)2

)
,

|ψ̈(v; y, b)| ≤ 2 +
y

4b
. (3.1)

Fisher information for Poisson model. We first make a quadratic approximation

along the gradient direction of the cost function at each iteration, and then apply one step
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of Newton’s method to minimize that 1D quadratic. Because computing the Hessian can

be computationally expensive in large-scale problems, we follow the statistics literature

by replacing the Hessian by the observed Fisher information when applying Newton’s

method [235, 133]. Our Fisher approach is based on the fact that the observed Fisher in-

formation is the negative Hessian matrix of the incomplete data log-likelihood functions

evaluated at the observed data, and hence can provide a good approximation to the Hes-

sian with enough data [172]. Moreover, the Fisher information matrix is always psd, and

avoids calculation of second derivatives. Using Fisher information in gradient-based algo-

rithms has a long history in statistics and is central to Fisher’s method of scoring [235, 185,

99, 133].

Specifically, we first approximate the 1D line search problem associated with (2.12) by

the following Taylor series

µk = argmin
µ∈R

fk(µ), (3.2)

fk(µ) ≜ f(xk − µ∇f(xk)) ≈ f(xk)− ∥∇f(xk)∥22 µ+
1

2
∇f(xk)

′∇2f(xk)∇f(xk)µ
2,

where one can verify that the minimizer is

µk =
∥∇f(xk)∥22

real{∇f(xk)′∇2f(xk)∇f(xk)}
. (3.3)

We next approximate the Hessian matrix ∇2f(x) using the observed Fisher information

matrix:

∇2f(x) ≈ I(x, b) (3.4)

≜ Ey

[
∇2f(x;y, b)

∣∣∣x, b]
= Ey

[
(∇f(x;y, b)) (∇f(x;y, b))′

∣∣∣x, b]
= A′Ey

[(
ψ̇·(v;y, b)

)(
ψ̇·(v;y, b)

)′ ∣∣∣v, b]A.
Here the dot subscript notation ψ̇·(v;y, b) denotes element-wise application of the func-

tion ψ̇ to its arguments (as in the Julia language), so the gradient ψ̇·(v;y, b) is a vector in

CM
. One can verify that the marginal Fisher information for a single term ψ(v; y, b) is

Ī(v, b) = Ey

[∣∣ψ̇(v; y, b)∣∣2∣∣∣v, b] = 4|v|2

|v|2 + b
, v ∈ C, b > 0. (3.5)
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Substituting (3.5) into (3.4) using the statistical independence of the elements of the gradi-

ent vector, and then substituting (3.4) into (3.3) yields the simplified step-size expression

µk ≜
∥∇f(xk)∥22
d′
kD1 dk

∈ R+, (3.6)

where dk ≜ A∇f(xk) and D1 ≜ diag{Ī·(Axk, b)}. (Careful implementation avoids

redundant matrix-vector products.)

This approach removes all tuning parameters other than number of iterations. In ad-

dition, using the observed Fisher information leads to a larger step size than using the

best Lipschitz constant of (2.12), i.e.,maxi{2 + yi/(4bi)} when bi > 0, hence accelerating

convergence. To facilitate fair comparisons in subsequent sections, we also derive a Fisher

information step size for the Gaussian noise model here. The marginal Fisher information

for the scalar case of the Gaussian cost function (2.8) is

Ī(v, b) = Ey

[∣∣4|v|(|v|2 − b− y)∣∣2∣∣∣v, b] = 16|v|2(|v|2 + b). (3.7)

one can also derive a convenient step size µk for thewf algorithm for the Gaussian model

(2.8) using its observed Fisher information to approximate the exact Hessian.

wfwith regularization. To potentially improve the reconstruction quality, one often

adds a regularizer or penalty to the Poisson log-likelihood cost function, leading to a cost

function of the form

Ψ(x) = f(x) + β R(x) . (3.8)

The general methods in this work are adaptable tomany regularizers, but for simplicity we

focus on regularizers that are based on the assumption that Tx is approximately sparse,

for a K × N matrix T . In particular, we used the corner-rounded anisotropic tv matrix

for regularization. Because thewf algorithm requires a well-defined gradient, we replaced

the ℓ1 norm term with a Huber function regularizer of the form

R(x) =1′h·(Tx;α) = min
z

1

2
∥Tx− z∥22 + α∥z∥1,

h(t;α) ≜

 1
2
|t|2, |t| < α,

α|t| − 1
2
α2, otherwise,

(3.9)

which involves solving for z analytically in terms of x. This smooth regularizer is suitable

for gradient-based methods like wf and for quasi-newton methods like lbfgs, as well as
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for versions of mm and admm. We refer to (3.9) as “tv regularization” even though it is

technically (anisotropic) “corner rounded” tv.

For the smooth regularizer (3.9), we majorize the Huber function h(t) using quadratic

polynomials with the optimal curvature using the ratio ḣ(z)/z [97, p. 184], so that the step

size µk becomes

µk ≜
∥∇f̃(xk)∥22

∇f̃(xk)′ (A′D1A+ βT ′D2T )∇f̃(xk)
,

∇f̃(xk) ≜ ∇f(xk) + βT ′ḣ·(Tx;α),

D2 ≜ diag{min·(α� |Txk|, 1)}, (3.10)

where � denotes element-wise division.

Algorithm 2 summarizes the (regularized) wf algorithm for the Poisson model that

uses the observed Fisher information for the step size and the optional gradient truncation

for noise reduction.

Algorithm 2: Regularized wf algorithm for the Poisson model

Input:A,y, b,x0,T , β and n (number of iterations)

for k = 0, ..., n− 1 do

∇f̃(xk) = A
′ψ̇·(Axk;y, b) + βT ′ḣ·(Txk)

if cost function is regularized then

µk ← Computed by (3.10)

else

µk ← Computed by (3.3)

end

xk+1 = xk − µk∇f̃(xk)
end

Output: xn

3.1.2.2 Majorize minimize (mm)

This section introduces our proposed mm algorithm with a quadratic majorizer using a

novel curvature formula for the Poisson phase retrieval problem.

An mm algorithm [100] is a generalization of the expectation-maximization (em) al-

gorithm that solves an optimization problem by iteratively constructing and solving sim-

pler surrogate optimization problems. Quadratic majorizers are very common in mm algo-

rithms because they have closed-form solutions and are well-suited to conjugate gradient

methods.
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The bounded curvature property derived in (3.1) enables us to derive an mm algorithm

[18] with a quadratic majorizer for (2.12), as illustrated in Fig. 3.1 for the real case.

fig 3.1 – Quadratic majorizers for the non-convex Poisson log-likelihood function

ϕ(r; y, b) when y = 6 and b = 2.

With a bit more work to generalize toCN
, a quadratic majorizer for (2.12) has the form

q(x;xk) ≜ f(xk) + real
{
(x− xk)

′A′ψ̇·(Axk;y, b)
}
+
1

2
(x− xk)

′A′WA(x− xk),

(3.11)

where W denotes a diagonal curvature matrix. From (3.1), one choice of W uses the

maximum of ψ̈:

Wmax ≜ diag{2 + y/(4b)} ∈ RM×M . (3.12)

However,Wmax is suboptimal because the curvature of a quadratic majorizer of ψ(v; ·)
varies with v = [Axk]i. For example, when |v| → ∞, then (2.12) is dominated by the

quadratic term having curvature = 2; so if y is large and b is small, thenWmax can be much

greater than the optimal curvature 2. Thus, instead of usingWmax to build majorizers, we

propose to use the following improved curvature:

Wimp ≜ diag{c·(Axk;y, b)} ∈ RM×M ,

c(s; y, b) ≜

 ψ̈

(
b+
√

b2+b|s|2
|s| ; y, b

)
, s ̸= 0,

2, s = 0.

(3.13)

One can verify lims→0 c(s; y, b) = 2 so (3.13) is continuous over s ∈ C. The Appendix A

proves that (3.13) provides a majorizer in (3.11) and is an improved curvature compared

to Wmax, though it is not necessarily the sharpest possible [55]; the sharpest (optimal)
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curvature copt(s) in real case can be expressed as

copt(s) = sup
r ̸=s

2
(
ϕ(r)− ϕ(s)− ϕ̇(s)(r − s)

)
(r − s)2

, (3.14)

where ϕ(·) is the marginal Poisson cost function defined in (2.13). However, (3.14) usually

does not have a closed-form solution due to its transcendental derivative; while ourWimp

has a simpler form and is more efficient to compute. Fig. 3.2 visualizes the quadratic ma-

jorizer with different curvatures and the original Poisson cost function (2.12). We find the

optimal curvature numerically by first discretizing r and then finding the supremum over

all discrete segments.
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fig 3.2 – Comparison of quadratic majorizers with maximum, improved and the optimal

curvatures, for y = 6 and b = 2, visualized around r = 0.5. All three curves touch at the

point r = s = 10 by construction.

If any constraint or regularizer is absent, the quadratic majorizer (3.11) associated with

(3.12) or (3.13) leads to the following mm update:

xk+1 = argmin
x∈FN

q(x;xk) = xk − (A′WA)−1A′ψ̇·(Axk;y, b). (3.15)

When N is large, the matrix inverse operation in (3.15) is impractical, so we run a few

inner iterations of cg to descend the quadratic majorizer and hence descend the original

cost function.
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3.1.2.3 Regularized mm

For the regularized cost function (3.8), one can use the quadratic majorizer (3.11) as a

starting point. If the regularizer is prox-friendly, then the minimization step of an mm

algorithm for the regularized optimization problem is

xk+1 = argmin
x∈FN

q(x;xk) + β∥Tx∥1. (3.16)

can be solved by proximal gradient methods [52, 16, 120]. To solve (3.16), we can use the

pogm with adaptive restart [120] that provides faster worst-case convergence bound than

the fista [16].

For non-proximal friendly regularizers, we can “smooth” it using the Huber function

(3.9), leading to the optimization problem of the form

xk+1 = argmin
x∈FN

q(x;xk) + β1′h·(Tx;α), (3.17)

and we use nonlinear cg for this minimization, with step sizes based on Huber’s quadratic

majorizer.

Algorithm 3 summarizes our mm algorithm with quadratic majorizer using the im-

proved curvature (3.13).

Algorithm 3: mm algorithm for the Poisson model

Input:A,y, b,x0 and n (number of iterations)

for k = 0, ..., n− 1 do
Build q(x;xk) (3.11) usingWimp (3.13)

if cost function is regularized then

if T is prox-friendly then

Update xk by (3.16) using pogm

else

Update xk by (3.17) using cg

end

else

Update xk by (3.15) or cg

end

end

Output: xn
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3.1.3 Implementation Details

This section introduces the implementation details of algorithms discussed in the previous

section and our experimental setup for the numerical simulation (Section 3.1.4). We ran all

algorithms on a server with Ubuntu 16.04 LTS operating system having Intel(R) Xeon(R)

CPU E5-2698 v4 @ 2.20GHz and 187 GB memory. All elements in the measurement vector

y were simulated to follow independent Poisson distributions per (2.11). All algorithms

were implemented in Julia v1.7.3. All the timing results presented in Section 3.1.4 were

averaged across 10 independent test runs.

3.1.3.1 Initialization

Luo et al. [161] proposed the optimal initialization strategy under randomGaussian system

matrix setting with Poisson noise. Since this work focuses on low-count regimes, the scale

factor κ in [161] is a very small number so that y−κ ≈ y. Therefore, we used x̃0, the leading

eigenvector of A′ diag{y � (y + 1)}A (instead of A′ diag{(y − κ) � (y + 1)}A) as an

initial estimate of x.

To accommodate signals of arbitrary scale, we scaled that leading eigenvector using a

nonlinear least-square fit:

α̂ = argmin
α∈R

∥y − b− |αAx̃0|2∥22 =
√

(y − b)′|Ax̃0|2
∥Ax̃0∥24

. (3.18)

Finally, our initial estimate is the element-wise absolute value of α̂x0 if x is known to be

real and nonnegative; and is α̂x0 otherwise.

3.1.3.2 Ambiguities

To handle the global phase ambiguity, i.e., all the algorithms can recover the signal only

to within a constant phase shift due to the loss of global phase information, before quan-

titative comparisons, we corrected the phase of x̂ by

x̂corrected ≜ sign (⟨x̂,x⟩) x̂. (3.19)

3.1.3.3 System matrix and True signals

Systemmatrix.We investigated 4 different choices for the systemmatrixA: complex ran-

dom Gaussian matrix (having 80000 rows), canonical dft (with reference image), masked
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dft matrix (with 20 masks) and a transmission matrix (etm) that is acquired empirically

through physical experiments [29, 173].

For the canonical dft, we used a reference image as used in holographic cdi [11],

specifically, the measurements follow

y ∼ Poisson(|F{[x,0,R]}|2 + b), (3.20)

where F denotes dft andR denotes a known reference image. This work uses the refer-

ence image shown in Fig. 3.3, taken by screen shot from [11].

fig 3.3 – Reference image from [11] used in holographic cdi and our canonical dft ex-

periments.

For the masked dft case, the measurement vector y in the Fourier phase retrieval

problem has elements with means given by

E[y[ñ]] =

∣∣∣∣∣
N−1∑
n=0

x[n]e−ı2πnñ/Ñ

∣∣∣∣∣
2

+ b[ñ], (3.21)

where Ñ = 2N − 1 (here we consider the over-sampled case), and ñ = 0, ..., Ñ − 1. After

introducing redundant masks, the measurement model becomes

E[yl[ñ]] =

∣∣∣∣∣
N−1∑
n=0

x[n]Dl[n]e
−ı2πnñ/Ñ

∣∣∣∣∣
2

+ bl[ñ], (3.22)

where E[yl] ∈ RÑ
for i = 1, . . . , L and Dl denotes the lth of L masks. Our experiment

used L = 21masks to define the overall system matrixA ∈ CLÑ×N
, where the first mask
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has full sampling and the remaining 20 have sampling rate 0.5 with random sampling

patterns.

We scaled each system matrix by a constant factor such that the average count of

measurement vector y is 0.25, and the background counts b are set to be all 0.1.

True images. We considered 4 images as the true images in our experiments Fig. 3.4

shows such images; (b) is from [165], (c) is from [11], (d)-(f) are from [173]. We used subfig-

ure (a) for experiments with random Gaussian system matrix, (b) for masked dft matrix,

(c) for canonical dft matrix and (d) for empirical transmission matrix, respectively.

3.1.4 Numerical Simulation Results

3.1.4.1 Convergence speed of wf with Fisher information

This section compares convergence speeds, in terms of cost function vs. time and psnr

vs. time, between wf using our proposed Fisher information for step size, and empirical

step size [25], backtracking line search [192], the optimal step size for the Gaussian noise

model [110], and lbfgs quasi-Newton to approximate the Hessian in Newton’s method

[107]. The lbfgs algorithm was from the “Optim.jl” Julia package [178].

Fig. 3.5 shows that, for all system matrix choices, wf with Fisher information con-

verged faster (in terms of decreasing the cost function) than all other methods; the lbfgs

algorithm had comparable convergence speed as wf with backtracking line search. We

found that wf with the empirical step size did not converge using hyper-parameters in

[25] so we excluded those results in Fig. 3.5. The backtracking approach, although slower

than Fisher approach per wall-time, is faster per-iteration. However, the step size found

by backtracking line search could be sensitive to hyper-parameter choices. For the wf

algorithm with optimal step size (derived based on Gaussian noise model [110]), we con-

jectured that it reached a non-stationary point that has larger cost function value than

those of other methods, as expected.

In terms of psnr, we found that in randomGaussian, masked dft and empirical trans-

mission cases, wf with Fisher information increased the psnr faster than all other meth-

ods; wf with optimal Gaussian step size led to lower psnr, perhaps again due to reaching

a sub-optimal minimizer. However, for the canonical Fourier case, we found that all meth-

ods started decreasing psnr after several iterations. The algorithmsmay bemore sensitive

to noise in the canonical Fourier matrix setting, especially in the low-count regime consid-

ered here. Apparently wf with optimal Gaussian step size overfits the noise more slowly

due to its sub-optimal step size under Poisson noise.
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(a) (b) [165]

(c) [11] (d) [173]

(e) Real part of (d) (f) Imaginary part of (d)

fig 3.4 – True images used in the simulations. Subfigure (d) shows the magnitude of a

complex image.
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(a) Random Gaussian system matrix. (b) Masked dft system matrix.

(c) Canonical dft system matrix. (d) Empirical transmission matrix.

fig 3.5 – Comparison of convergence speed for various wf methods and lbfgs under

different system matrix settings. The “Optim Gau” curve is wf using the curvature from

[110] that is optimal for Gaussian noise. The circle marker corresponds to the cost function

and the square marker corresponds to psnr.

3.1.4.2 Comparison of Poisson and Gaussian algorithms

This section compares the reconstruction quality, i.e., the nrmse to the true signal, be-

tween wf derived from the Gaussian noise (2.8), and wf derived from the Poisson noise

model (2.12) as well as regularized wf under different system matrix settings. We used

corner-rounded tv regularizer with β = 32 and α = 0.1 in the regularized wf algorithm.

Fig. 3.6 shows that algorithms derived from the Poisson model yielded consistently

better reconstruction quality (lower nrmse) than algorithms derived from the Gaussian

model, as expected. Furthermore, by incorporating regularizer that exploits the assumed

property of the true signal, the nrmsewas further decreased. Spectral initializationworked

well in random Gaussian matrix setting, but not for other system matrices, as expected

from its theory. The wf Gaussian approach failed to reconstruct in masked and canonical
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dft system matrix setting. Since incorporating appropriate regularizers helps algorithms

yield higher quality reconstructions, a question is naturally raised about which regular-

ized algorithm converges the fastest. The next subsection presents such comparisons.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

fig 3.6 – Reconstruction quality comparison between fourmethods (left to right): the opti-

mal Poisson spectral initialization [161], thewf Gaussian method, thewf Poissonmethod,

and wf Poisson with tv regularization. System matrices: (a)-(d) random Gaussian; (e)-(h)

masked dft; (i)-(l) canonical dft with reference image; (m)-(p) etm. Magnitude of com-

plex images shown. All wf algorithms used the proposed Fisher information for step size.
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3.1.4.3 Convergence speed of regularized Poisson algorithms

As discussed in Section 3.1.2, many algorithms can be modified to accommodate regulariz-

ers. We compared the convergence speeds of regularized Poisson algorithms (wf Fisher,

wf backtracking, lbfgs, mm and admm), with a smooth regularizer (corner-rounded tv),

under different system matrix settings. Based on Fig. 3.5, we did not run simulations of

regularized wf with empirical step size and with Gaussian optimal step size, due to their

non-converging trend and sub-optimal solution, respectively. For all other algorithms, we

set the regularization parameters to be β = 32 and α = 0.1 (defined in (3.8) and (3.9)).

Fig. 3.7 shows that the regularized wf with our proposed Fisher information for step

size converged the fastest compared to other methods under all different system matrices.

The lbfgs again had a comparable convergence speed as wf using backtracking line

search. The mm algorithm with improved curvature, was slower in wall-time due to extra

computation per iteration, but was faster per iteration due to its sharper curvature. In

masked and canonical Fourier case, however, mm with improved curvature was faster

than the maximum curvature in wall-time comparison, which can be attributed to large

magnitude low frequency components in the coefficients of the Fourier transform.

3.1.5 Discussion

Current methods for phase retrieval mostly focus on mle for Gaussian noise; fewer algo-

rithms were derived for Poisson noise [39, 17, 31]. Here we proposed a novelwf algorithm

and an mm algorithm and then did an empirical study on the convergence speed as well as

reconstruction quality of several Poisson phase retrieval algorithms. In our proposed wf

algorithm, we first replaced the gradient term in Gaussian wf (2.9) with its Poisson coun-

terpart (3.1). Then we did a quadratic approximation of the cost function and applied one

iteration of Newton’s method to define an “optimal” step size.We then proposed to use the

observed Fisher information to approximate the Hessian when computing the step size,

which is a common method in computational statistics. Moreover, the Fisher information

matrix is guaranteed to be positive semi-definite and is more computationally efficient

compared to the Hessian. To further illustrate our proposed method of using Fisher in-

formation to approximate the Hessian, Fig. 3.8 visualizes these two matrices (in marginal

forms).

As shown in Fig. 3.8, the Hessian is noisy and can have some negative elements. Such

undesirable features can lead to unstable step size calculations. In contrast, the elements in

Fisher information matrix are non-negative and less noisy. We ran some experiments and

found that when the background counts bi are large, using the noisy Hessian to calculate
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(a) Random Gaussian system matrix. (b) Masked dft system matrix.

(c) Canonical dft system matrix. (d) Empirical transmission matrix.

fig 3.7 – Comparison of convergence speed of variant algorithms with corner-rounded

tv regularizer. The circle marker corresponds to cost function and the square marker

corresponds to psnr.

the step size can lead to divergence of the cost function, due to the negative values in the

marginal second derivative. Setting such negative values in the second derivative to zero

is a possible solution, but we found that approach led to slower convergence than using

the Fisher information. One potential alternative to our approach is to use the empirical

Fisher information, but that may be suboptimal since the empirical Fisher information

does not generally capture second-order information [130].

To accommodate our wf algorithm with non-smooth regularizers, e.g., ∥Tx∥1, we
used a Huber function to approximate the ℓ1 norm with a quadratic function around zero,

so that theWirtinger gradient is well-defined everywhere. A limitation of this work is that

we did not consider other regularizers in our experiments, though our algorithms can be

generalized to handle other smooth regularizers with minor modifications. One drawback
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fig 3.8 – Visualization of the marginal Hessian (3.1) and the marginal observed Fisher in-

formation (3.5). The horizontal axis denotes the ith element in themarginal Hessian/Fisher.

Data were simulated with a random Gaussian matrix and 100 independent realizations.

of tv regularization is that it assumes piece-wise uniform latent images so it lacks general-

izability to other kinds of images, One way to address this is to train deep neural networks

[196, 273] with a variety of images, potentially leading to better generalizability.

3.1.6 Conclusion

This work proposed and compared algorithms based on mle and regularized mle for

phase retrieval from Poisson measurements, in low-photon count regimes. We proposed

a novel method that used the Fisher information to compute the step size in the wf al-

gorithm; this approach eliminates all parameter tuning except the number of iterations.

We also proposed a novel mm algorithm with improved curvature compared to the one

derived from the upper bound of the second derivative of the cost function.

Simulation results experimented on random Gaussian matrix, masked dft matrix,

canonical dft matrix and an empirical transmission matrix showed that: 1) For unreg-

ularized algorithms, the wf algorithm using our proposed Fisher information for step

size converged faster than using empirical step size, backtracking line search, optimal

step size for Gaussian noise model and lbfgs. Moreover, our proposed Fisher step size

can be computed efficiently without any tuning parameter. 2) As expected, algorithms

derived from the Poisson noise model produce consistently better reconstruction quality

38



Object Hologram

Scattered waves Light intensity 
sensor

Photoelectrons
 (Poisson)

Dark current
 (Poisson)

Read noise 
(Gaussian)

Phase retrieval algorithms

A-to-D 
Converter

Bias 
voltage

Fourier transform

Reference beam

Object beam
Divergent 

beam

fig 3.9 – Illustration of Poisson and Gaussian noise statistics in holographic phase re-

trieval.

than algorithms derived from the Gaussian noise model for low-count data. Furthermore,

by incorporating regularizers that exploit the assumed properties of the true signal, the re-

construction quality can be further improved. 3) For regularized algorithms with smooth

corner-rounded tv regularizer,wfwith Fisher information converges faster thanwfwith

backtracking line search, lbfgs, mm and admm.

Futurework includes precomputing and tabluting the optimal curvature for the quadratic

majorizer, establishing sufficient conditions for global convergence, investigating algo-

rithms with other kind of regularizers (e.g., deep learning methods [196, 273]), investigat-

ing sketching methods for large problem sizes [162], and testing Poisson phase retrieval

algorithms under a wider variety of experimental settings.

3.2 Poisson-Gaussian Phase Retrieval with

Score-based Image Prior
3

3.2.1 Motivation

In practical scenarios, the measurements y are often contaminated by both pg noise. The

Poisson distribution is due to the photon counting and dark current [244]. The Gaussian

statistics stem from the readout structures (e.g., analog-to-digital converter (ADC)) of com-

mon cameras. Fig. 3.9 illustrates the pg mixed noise statistics in the holographic pr. Be-

cause the pg likelihood is complicated, most previous works [26, 25, 214, 110, 24, 224, 192,

24, 76, 182, 243, 74, 107, 152, 266, 230, 27, 254, 232, 86, 260, 11, 238, 136, 146, 78, 150, 69,

39, 17, 274, 31] approximate the Poisson noise statistics by the central limit theorem and

3
This section is based on [96, 148].
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work with a substitute Gaussian log-likelihood estimate problem or use the Poisson max-

imum likelihood model but simply disregard Gaussian readout noise. Other more com-

plicated approximation methods have also been proposed, such as the shifted Poisson

model [219], the unbiased inverse transformation of a generalized Anscombe transform

[164, 234], and the majorize-minimize algorithm [68]. However, these approximate meth-

ods can lead to a suboptimal solution after optimization that results in a lower-quality

reconstruction. Apart from the likelihood modeling, the regularizer R(x) provides prior

information about underlying object characteristics that may aid in resolving ill-posed in-

verse problems. Beyond simple choices of R(x) such as tv or the L1-norm of coefficients

of wavelet transform [53], deep learning (dl)-integrated algorithms for solving inverse

problems in computational imaging have been reported to be the state-of-the-art [184].

The trained networks can be used as an object prior for regularizing the reconstructed

image to remain on a learned manifold [20]. Incorporating a trained denoising network

as a regularizer R(·) led to methods such as plug-and-play (pnp) [28, 276, 115] and regu-

larization by denoising (red) [199]. In contrast to training a denoiser using clean images,

there is growing popularity of self-supervised image denoising approaches that do not

require clean data as the training target [140, 14, 246]. In addition to training a denoiser

as regularizer, generative model-based priors have also been proposed [7, 249]. Recently,

diffusion models have gained significant traction for image generation [225, 94, 63, 227].

These probabilistic image generation models start with a clean image and gradually in-

crease the level of noise added to the image, resulting in white Gaussian noise. Then in

the reverse process, a neural network is trained to learn the noise in each step to gener-

ate or sample a clean image as in the original data distribution. The score-based diffusion

models estimate the gradients of data distribution and can be used as plug-and-play priors

for inverse problems [88] such as image deblurring and mri and ct reconstruction [139,

105, 48, 50, 158, 226]. However, the realm of using score-based models to perform phase

retrieval is relatively unexplored; previous relevant works [218, 88] applied ddpm to pr

but with less realistic systemmodels and under solely Gaussian or Poisson noise statistics.

In summary, our contribution is three-fold:

• We present a new algorithm known as accelerated wf with a score-based image

prior (i.e., ∇R(x)) to address the challenge of holographic pr problem in the pres-

ence of pg noise statistics.

• Theoretically, we derive a Lipschitz constant for the holographic pr’s pg log-likelihood

and subsequently demonstrate the critical points convergence guarantee of our pro-

posed algorithm.
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• Simulation experiments demonstrate that: 1) Algorithms with the pg likelihood

model yield superior reconstructions in comparison to those relying solely on ei-

ther the Poisson or Gaussian likelihood models. 2) With the proposed score-based

prior as regularization, the proposed approach generates higher quality reconstruc-

tions and is more robust to variation of noise levels without any parameter tuning

compared to alternative state-of-the-art methods.

3.2.2 Methods

3.2.2.1 Score Function and Diffusion Models

Let pθ(x) denote amodel for the prior distribution of the latent imagex; the score function

is then defined as
4 sθ(x) = ∇x log pθ(x). Consider a sequence of positive noise scales (for

white GaussianN (0, σ2
k)): σ1 > σ2 > · · · > σK , with σK being small enough so that noise

of this level does not visibly affect the image, and σ1 depending on the application. Score

matching can be used to train a noise conditional score network [241, 225] as follows:

θ̂ = argmin
θ

K∑
k=1

Ex,x̃

[(
sθ(x, σk)−

x− x̃
σ2
k

)2
]
,

where x ∼ p(x), x̃ ∼ x+N (0, σ2
kI). (3.23)

With enough data, the neural network sθ(x, σ) is expected to learn the distribution pσ(x) =∫
p(x)pσ(y|x)dx where pσ(y|x) = N (x, σ2I). To sample from the prior, the method

of Langevin dynamics is frequently used [225]. To leverage diffusion models for solving

inverse problems, previous methods generally recast the reconstruction problem as a con-

ditional generation or sampling problem [218, 88, 227, 47, 226, 46]. This involves relying

on the capacity of diffusion models to produce high-quality images while complying with

data-fidelity constraints. However, in applications where data collection is costly, i.e., with

a limited amount of training data, it is often challenging to train a diffusion model that

can generate high-quality images even in an unconditional way. Under these conditions,

we found that the score function learned during training diffusion models can serve as

an effective image prior, which can capture certain data characteristics when trained for

the denoising prediction in the reverse process of the diffusion model. Similar to previous

works [88] that uses the score function as a pnp prior, here we also incorporate the score

function as a regularization in the optimization objective for solving the pr problem. We

4
This definition differs from the score function in statistics where the gradient is taken w.r.t. θ of

log pθ(x).
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believe this is a more efficient scheme for incorporating diffusion priors especially for ap-

plications with a limited amount of training data, a very common situation in the optical

imaging sector.

3.2.2.2 Likelihood Modeling and wf

Based on the physical model as demonstrated in Fig. 3.9, we model the system matrix A

by the (oversampled and scaled) discrete Fourier transform applied to a concatenation of

the samplex, a blank image (representing the holographic separation condition [136]) and

a known reference imageR, similar to (3.20), the measurements y follow the Poisson plus

Gaussian distribution:

y ∼ N (Poisson
(
|A(x)|2 + b̄

)
, σ2I), A(x) ≜ αF{[x,0,R]}. (3.24)

Here σ2
denotes the variance of Gaussian noise, and α denotes a scaling factor (quantum

efficiency, conversion gain, etc.) after applying the Fourier transform. So that the negative

log-likelihood of (3.24) is

gPG(x) =
M∑
i=1

gi(x), gi(x) ≜ − log

 ∞∑
n=0

e−(|a
′
ix|2+b̄i) ·

(
|a′

ix|2 + b̄i
)n

n!
· e

−
(

(yi−n)2√
2σ

)
√
2πσ2

 .

(3.25)

HereM denotes the length of y, a′
i denotes the ith row of A (since A is linear). wf can

be used for estimating x:

∇gPG(x) = 2A′ diag{ϕi(|a′
ix|2 + bi; yi)}Ax, (3.26)

ϕ(u; v) ≜ 1− s(u, v − 1)

s(u, v)
, s(a, b) ≜

∞∑
n=0

an

n!
e
−
(

b−n√
2σ

)2

.

Lemma. The function ϕ(u) is Lipschitz differentiable and the Lipschitz constant for

ϕ̇(u) is:

max{|ϕ̈(u)|} ≜ µ =
(
1− e−

1
σ2

)
e

2ymax−1

σ2 ,where ymax = max
i∈{1,...,M}

{yi}. (3.27)

The proof is given in [43].

42



Theorem 1 Assume |xj| is bounded above byC for each j, a Lipschitz constant of∇gPG(x)
is

L(∇gPG) ≜ 2∥A∥22
(
2C2∥A∥2∞ ỹmax +

∣∣∣1− C2 ∥A∥2∞ ỹmax

∣∣∣) ,
ỹmax ≜

(
1− e−

1
σ2

)
e

2ymax−1

σ2 . (3.28)

where ymax is maxi{∥yi|}, i = 1, . . . ,M .

Proof: Let gPG(x) denote a function that maps a vector x ∈ RN
to a scalar; it is the

sum of each gi(x) ≜ ϕi(|a′
ix|2 + bi; yi) over i = 1, . . . ,M . Let g(x) denote a function

that maps a vector x ∈ RN
to the measurement space y ∈ RM

; it is the concatenation of

each gi(x). So∇gPG(x) ∈ RN
, ∇2gPG(x) ∈ RN×N

, and ∇g(x) ∈ RM×N
.

By the chain rule, the Hessian of gPG is

∇2gPG(x) = 2A′ (diag{Ax}∇g(x) + diag{g(x)}A) . (3.29)

Assume |xj| is bounded above by C for each j. Then it follows that ∥ diag{Ax}∥2 ≤
C∥A∥∞ by the construction of matrix-vector multiplication, leading to a Lipschitz con-

stant for ∇gPG(x):

L(∇gPG) = 2C∥A∥2 ∥A∥∞ ∥∇g(x)∥2 + 2∥A∥22 ∥ diag{g(x)}∥2. (3.30)

Here L(∇gPG) denotes a Lipschitz constant for ∇gPG, not necessarily the best one. To

compute ∥∇g(x)∥2, we substitute the Lipschitz constant of ϕ̇(u) into (3.26) and apply

Lemma 3.2.2.2, leading to

∥∇g(x)∥2 ≤ 2C∥A∥2∥A∥∞
(
1− e−

1
σ2

)
e

2ymax−1

σ2 . (3.31)

To compute ∥ diag{g(x)}∥2, let

t ∈ [b,maxi{|a′
ix|2}+ b] ⊆ T ≜ [b, C2∥A∥2∞ + b]. (3.32)

From the fact that ϕ̇(t) ≤ 1 by its construction, one can derive that

∥ diag{g(x)}∥2 = ∥g(x)∥∞ ≤ maxt∈T {|ϕ̇(t)|} ≤
∣∣∣1− C2∥A∥2∞max{|ϕ̈(t)|}

∣∣∣. (3.33)

Combining (3.30), (3.31) and (3.33) completes the proof of Theorem 1.
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However, due to the infinite sum in Poisson-Gaussian log-likelihood (3.25), we approx-

imate s(a, b) with a finite sum following [43]:

s(a, b) ≈
n+∑
n=0

an

n!
e
−
(

b−n√
2σ

)2

, n+ = ⌈n∗ + δσ⌉, (3.34)

with n∗
given by

n∗ = σW
( a
σ2
eb/σ

2
)

≈ σ

(
b

σ2
log
( a
σ2

)
− log

(
b

σ2
log
( a
σ2

)))
=
b

σ
log
( a
σ2

)
− σ log

(
b

σ2
log
( a
σ2

))
, (3.35)

where W(·) denotes the Lambert function. The accuracy of this approximation is con-

trolled by δ. Reference [43] provides a comprehensive analysis on the maximum error

value of the truncated sum (3.34) and found the bound was very precise.

3.2.2.3 Accelerated wf with Score-based Image Prior

Algorithm 4: Our proposed accelerated wf with score-based image prior.

Input: Measurement y, system matrixA, momentum factor η0 = 1, step size

factor β, weighting factor γ, truncation operator PC(·)→ [0, C]; initial image

x0, initial auxiliary variables z0 = w0 = v0 = x0, initialize σ1 > σ2 > · · · > σK .
for k = 1 : K do

for t = 1 : T do

Set step size µ = βσ2
k.

Set ∆zt,k =
ηt−1,k

ηt,k
(zt,k − xt,k).

Set ∆xt,k =
ηt−1,k−1

ηt,k
(xt,k − xt−1,k).

Set wt,k = PC (xt,k +∆zt,k +∆xt,k).
Compute sθ(xt,k, σk) and sθ(wt,k, σk).
Set zt+1,k = wt,k − µ (∇gPG(wt,k) + sθ(wt,k, σk)).
Set vt+1,k = xt,k − µ (∇gPG(xt,k) + sθ(xt,k, σk)).

Set ηt+1,k =
1
2

(
1 +

√
1 + 4η2t,k

)
.

Set xt+1,k = PC (γt,kzt+1,k + (1− γt,k)vt+1,k).
end

end

Output: Return xT,K .
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For accelerating the wf algorithm, we followed the implementation of [141] as its con-

vergence guarantee was proved. Assuming that the true score function can be learned

properly, when we have a trained score function sθ(x, σ) by applying (3.23), the gradient

descent algorithm for map estimation has the form: xt+1 = xt− µ(∇g(xt) + sθ(xt, σk)).

Algorithm 4 summarizes our proposed awfs algorithm. In a similar fashion as Langevin

dynamics, we choose σk to be a descending scale of noise levels. In practice, we generally

use each noise level a fixed number of times, with geometrically spaced noise levels be-

tween some lower and upper bound. The step size factor β in Algorithm 4 can be selected

empirically, but we show that the Lipschitz constant of the gradient∇gPG(xt)+sθ(xt, σk)

exists as demonstrated in Theorem 2 (the proof is given in the Appendix C).

We assume that the data allows the neural network to learn the score function well,

i.e., sθ(x, σ) ≈ ∇ log(pσ(x)), and pσ(x) = p(x) ⊛N (0, σ2), where ⊛ denotes (circular)

convolution. One can show that ∇ log(pσ(x)) is Lipschitz continuous on [−C,C]N . The
proof is given in Appendix C. Using pσ(x), we define the smoothed posterior as

pσ(x|A,y, b̄, r) ∝ p(y|A,x, b̄, r)pσ(x). (3.36)

Theorem 2 For a smooth density function pσk
(x) that has finite expectation with σk > 0,

the Lipschitz constant of ∇gPG(xt,k) + sθ(xt,k, σk) exists when each element in xt,k sat-

isfies 0 < |xj| < C for each j. Furthermore, if the weighting factor γ ∈ {0, 1} is cho-
sen appropriately following [141], i.e., according to the higher posterior probability between

pσk
(z|y,A, b̄, r) and pσk

(v|y,A, b̄, r); then with sufficiently small β, the inner iteration

sequence {xt,k} generated by Algorithm 4 is bounded, and any accumulation point of {xt,k}
is a critical point of the posterior distribution pσk

(x|y,A, b̄, r) in (3.36).

Proof: By Lipschitz continuity of log(pσ(x)), and from the design of Algorithm 4,

xt,k and wt,k are both bounded between [0, C] for all t, k, so the Lipschitz constant L∗
of

∇gPG(·) + sθ(·) exists. With the step size µ satisfying 0 < µ < 1
L∗ , and the weighting

factor γ ∈ {0, 1} being chosen according to the higher posterior probability between

pσk
(z|A,y, b̄, r) and pσk

(v|A,y, b̄, r) (see [141]), we satisfy all conditions in Theorem 1

of [141], which establishes the critical-point convergence of the sequencext,k generated by

Algorithm 4 for any σk, k = 1, . . . , K . Hence the sequence xt,k generated by Algorithm 4

converges as t→∞ to a critical-point of the posterior pσk
(x|A,y, b̄, r) for any σk.
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3.2.3 Experiment

3.2.3.1 Experiment Settings

Dataset. We tested all algorithms on three datasets: 162 histopathology images related

to breast cancer [4] (train/val/test is 122/20/20); 920 images from CelebA dataset [155]

(train/val/test is 800/100/20); and 720 images from a homemade ct-density dataset

(train/val/test is 600/100/20). The ct-density dataset was generated from spect/ct im-

ages for Yttrium-90 radionuclide therapy after applying the ct-to-density calibration

curve [143]. Although the size of training datasets are relatively small compared to typi-

cal datasets such as ImageNet or LSUN [94, 227] that have millions of images, we do not

require the score functions to learn image priors strong enough to generate realistic im-

ages from white Gaussian noise; rather, it is sufficient for the priors to be able to denoise

moderately noisy images.

System Model. Similar to (3.20), we define the system matrix to be discrete Fourier

transform of the concatenation of the true image x, a blank image 0 and a reference

image R with scaling and oversampling. We set the scaling factor α to be in the range

[0.02, 0.035] so that the average counts per pixel range from 6 to 25; the oversampled ratio

is set to 2. We set R to be a binary random image similar to what was used in [136]. The

standard deviation of the Gaussian read noise added to the measurements y was set as

σ ∈ [0.5, 1.5].

ImplementedAlgorithms. For unregularized algorithms, we implemented Gaussian

wf, Poisson wf and Poisson-Gaussian wf. For regularized algorithms, we implemented

smoothed total variation (tv) based on the Huber function [97, p. 184] and pnp/redmeth-

ods with the dl denoiser [277]: pnp-admm [240], pnp-pgm [114], and red-sd [199]. We

also implemented the red-sd algorithmwith “Noise2Self” zero-shot image denoising net-

work [14] (red-sd-SELF). For diffusionmodels, we implemented dolph [218] and our pro-

posed awfs. The implementation details of each algorithm can be found in the appendix

of [148]. We used spectral initialization [161] for the Gaussian pr and Poisson prmethods;

we then used the output results from Poisson pr to initialize other algorithms. We ran all

algorithms until convergence in normalized root mean squared error (nrmse) or reached

the maximum number of iterations (e.g., 50).

To evaluate the robustness and limitation of these algorithms, we first tuned the pa-

rameters for each algorithm at the noise level when α = 0.030 and σ = 1, and then held

them fixed throughout all experiments (Table 3.1, Table 3.2, Fig. 3.15 and Fig. 3.16). In prac-

tice the ground truths are unknown, so oracle tuning of test datasets is infeasible (though
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tbl 3.1 – ssim and nrmse for Poisson and pg likelihoods. Results were averaged across

7 different noise levels by varying α ∈ 0.02 : 0.005 : 0.035 in (3.24).

Likelihood Unregularized (ssim/nrmse) dolph (ssim/nrmse) awfs (ssim/nrmse)

DataSet: Histopathology [4]

Gaussian 0.52 ± 0.18 41.2 ± 25.3 0.76 ± 0.07 18.0 ± 3.0 0.84 ± 0.06 16.2 ± 3.7

Poisson 0.54 ± 0.18 31.7 ± 10.2 0.72 ± 0.13 19.5 ± 6.1 0.83 ± 0.06 16.2 ± 3.7

Poisson-Gaussian 0.57 ± 0.18 28.9 ± 9.0 0.80 ± 0.06 16.0 ± 2.9 0.85 ± 0.05 15.4 ± 3.7

DataSet: CelebA [155]

Gaussian 0.31 ± 0.09 55.6 ± 13.9 0.70 ± 0.12 14.5 ± 17.4 0.72 ± 0.16 15.3 ± 11.8

Poisson 0.39 ± 0.10 24.5 ± 11.4 0.61 ± 0.12 15.6 ± 10.6 0.72 ± 0.16 15.2 ± 11.8

Poisson-Gaussian 0.42 ± 0.10 21.8 ± 9.1 0.71 ± 0.11 13.7 ± 11.1 0.74 ± 0.15 14.8 ± 11.9

DataSet: ct-Density

Gaussian 0.29 ± 0.09 50.5 ± 8.0 0.51 ± 0.12 22.4 ± 3.9 0.82 ± 0.11 19.1 ± 4.8

Poisson 0.19 ± 0.06 48.9 ± 13.1 0.38 ± 0.11 25.6 ± 7.5 0.84 ± 0.08 17.8 ± 4.3

Poisson-Gaussian 0.24 ± 0.06 40.8 ± 9.5 0.55 ± 0.08 20.0 ± 3.3 0.88 ± 0.05 16.4 ± 3.7

some form of cross validation may be possible). Though the numbers reported could fluc-

tuate after careful refinement, e.g., by performing grid search on tuning parameters, such

techniques would potentially impede the algorithm’s practical use.

Network Training. For pnp denoising networks, we trained all denoisers on differ-

ent noise levels σ ∈ {9, 11, 13, 15} and found that σ = 15 worked the best on our data.

We also used the denoiser scaling technique from [262] to dynamically adjust the per-

formance of all pnp methods. To perform score matching, we applied 20 geometrically

spaced noise levels between 0.005 and 0.1 on each of the training images. All networks

were implemented in PyTorch and trained on an NVIDIA Quadro RTX 5000 GPU using

the ADAM optimizer [124] for 1000 epochs with the best one being selected based off the

validation error, i.e., the mean squared error (MSE) loss.

3.2.3.2 Results

We compared all implemented algorithms both qualitatively, by visualizing the recon-

structed images and residual errors, and quantitatively, by computing the nrmse and

structural similarity indexmeasure (ssim) [248]. Due to the global phase ambiguity, i.e., all

the algorithms can recover the signal only to within a constant phase shift due to the loss

of global phase information, we corrected the phase of x̂ by x̂corrected ≜ sign(⟨x̂,xtrue⟩) x̂.
Fig. 3.10 shows experiments of running unregularized methods based on different

noise models on the histopathology, CelebA, and CT density datasets. For comparison,
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fig 3.10 – Reconstructed images by unregularized methods (Gaussian, Gaussian-

Amplitude, Poisson and Poisson-Gaussian) on Histopathology dataset [4], celebA dataset

[155] and CT-density dataset. The bottom left/right subfigures correspond to the zoomed

in area and the error map for each image. We used α = 0.035 and σ = 1.

we ran the unregularized methods with a Gaussian only noise model, Poisson only, and

PG noise model.

Fig. 3.11, Fig. 3.12 and Fig. 3.13 visualize reconstructed images generated by algorithms

mentioned in the previous section. The wf with pg likelihood outperforms wf with Pois-

son likelihood with a consistently higher ssim and lower nrmse. Moreover, we found

unregularized Gaussian wf failed to reconstruct images similar to what was reported in

[192]. Of the regularized algorithms with pg likelihood, our proposed awfs had less vi-

sual noise and achieved greater detail recovery compared to other methods, as evidenced

by the zoomed-in area in these figures. Fig. 3.14 shows that for a variety of datasets, when

combined with the awfs method, while the Poisson only and Gaussian only models lead

to reasonable reconstructions, the PG noise model leads to the highest quality image. For

all three datasets shown, when used in conjunction with our awfs method, including

both Poisson and Gaussian likelihoods results in the highest quality reconstruction both

48



fig 3.11 – Reconstructed images on dataset [4]. The bottom left/right subfigures corre-

spond to the zoomed in area and the error map for each image. α and σ were set to 0.02

and 1, respectively.

fig 3.12 – Reconstructed images on celebA dataset [155]. The bottom left/right subfigures

correspond to the zoomed in area and the error map for each image. α and σ were set to

0.035 and 1, respectively.

in terms of quantitative metrics as well as visually. Thus, although the score function pro-

vides a useful prior for recovering an image when the measurement is very noisy, a proper

noise model is also crucial to a high quality reconstruction.
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fig 3.13 – Reconstructed images on ct-density dataset. The bottom left/right subfigures

correspond to the zoomed in area and the error map for each image. α and σ were set to

0.035 and 1, respectively.

For quantitative evaluations, Table 3.1 exemplifies the effect of using our proposed pg

likelihood as compared to the simpler Poisson likelihoods. We did not run the Gaussian

likelihood with dolph or awfs due to the abysmal performance with this likelihood. In

all cases, usage of the pg likelihood results in improved image quality in terms of both

metrics. Table 3.2 consists of experiments using the pg likelihood and shows the efficacy

of the proposed awfs method over other methods. In particular, our awfs had superior

quantitative performance over all other compared methods on the histopathology and ct-

density datasets; in contrast, the pnp-pgm showed the lowest nrmse on celebA dataset.

This is likely due to higher randomness in celebrity faces because the effectiveness of

generative models can vary depending on the dataset used. Thus, when provided with a

small amount of training data with high randomness, image denoising models (dncnn)

may be more effective than generative models.

We also tested the robustness of the leading algorithms in Table 3.2, by varying both

scaling factor α and std of Gaussian noise σ. Fig. 3.15 and Fig. 3.16 illustate results, where

our awfs algorithm had the highest ssim and lowest nrmse. In Fig. 3.16, awfs demon-

strated minimal variations in ssim and nrmse metrics than dolph as evidenced by the

smaller discrepancies in ssim (0.17 vs. 0.23) and nrmse (12.6% vs. 18.2%) when σ varies

from 0.75 to 1.5. Fig. 3.17 compares the convergence rate of awfs vs. wfs for the Pois-

son and pg likelihood, respectively. Under a variety of noise levels, awfs consistently

converged faster than wfs in terms of number of iterations.
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fig 3.14 – Reconstructed images by Gaussian, Poisson and Poisson-Gaussian log-

likelihood model with AWFS image prior. Tested on Histopathology dataset [4], celebA

dataset [155] and CT-density dataset. The bottom left/right subfigures correspond to the

zoomed in area and the error map for each image. α and σ were set to 0.025 and 1, respec-

tively.

It is a known property of diffusion models that they can produce images with halluci-

nated features if the measurements are insufficiently informative. In the case of low-count

phase retrieval with serious corruptions of both Poisson and Gaussian noise, as is investi-

gated here, the measurement is highly corrupted and contains magnitude-only measure-

ments of the original signal. Thus, it may be difficult for the diffusion models to avoid

some otherwise realistic hallucinations if the data consistency is not strong enough to

guide the model away from such hallucinations. On the other hand, if the measurements
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tbl 3.2 – ssim and nrmse using Poisson Gaussian likelihood with different regulariza-

tion/image prior approaches. Results were averaged across 7 different noise levels by vary-

ing α ∈ 0.02 : 0.005 : 0.035 in (3.24). wfs
∗
runs the same number of iterations as awfs

whereas wfs
†
runs more iterations until convergence.

Dataset Histopathology [4] CelebA [155] ct-Density

Methods ssim nrmse (%) ssim nrmse (%) ssim nrmse (%)

Unregularized 0.57 ± 0.18 28.9 ± 9.0 0.42 ± 0.10 21.8 ± 9.1 0.24 ± 0.06 40.8 ± 9.5

red-sd-SELF [14] 0.66 ± 0.13 21.9 ± 4.5 0.60 ± 0.09 15.9 ± 10.6 0.34 ± 0.04 28.1 ± 4.1

pnp-admm [240] 0.71 ± 0.11 20.7 ± 4.2 0.56 ± 0.08 16.7 ± 8.1 0.55 ± 0.03 31.2 ± 2.7

tv regularizer 0.72 ± 0.11 18.2 ± 3.9 0.64 ± 0.07 14.4 ± 8.6 0.41 ± 0.03 23.7 ± 2.8

red-sd [199] 0.76 ± 0.09 16.8 ± 3.6 0.69 ± 0.11 13.9 ± 10.9 0.38 ± 0.04 25.9 ± 4.0

pnp-pgm [114] 0.78 ± 0.11 16.5 ± 4.5 0.74 ± 0.14 13.5 ± 11.3 0.42 ± 0.07 24.6 ± 4.4

dolph [218] 0.80 ± 0.06 16.0 ± 2.9 0.71 ± 0.11 13.7 ± 11.1 0.55 ± 0.08 20.0 ± 3.3

wfs
∗

0.76 ± 0.12 18.2 ± 5.5 0.63 ± 0.16 16.9 ± 11.8 0.53 ± 0.17 21.3 ± 7.6

wfs
†

0.83 ± 0.06 16.2 ± 4.0 0.70 ± 0.16 15.7 ± 11.8 0.74 ± 0.13 17.3 ± 4.8

awfs (Proposed) 0.85 ± 0.05 15.4 ± 3.7 0.74 ± 0.15 14.8 ± 11.9 0.88 ± 0.05 16.4 ± 3.7

are less corrupted, then the data consistency should be strong enough to avoid such hal-

lucinations. Fig. 3.18 provides examples of this for the CT image dataset via a comparison

of the reconstruction quality of the awfs method over a range of count levels. With the

lowest scaling factor, e.g., α = 0.02, the measurements were seriously corrupted with

noise, and the method may hallucinate some features. However, at higher count level, e.g.,

α = 0.05, there is enough information in the measurement to enforce consistency and

avoid noticeable hallucinations. We performed the same experiment twice with different

noisy initializations and all other parameters held equal to demonstrate robustness of the

method under different initializations.

3.2.4 Discussion

pr has a long-standing history in the field of signal processing and imaging. Pioneering

works such as the error reduction and hybrid input-output algorithms by Gerchberg Sax-

ton [76] and Fienup [73] have been proposed to address this problem. These iterative

algorithms involve constraints imposed on evaluations between the image domain and

frequency domain. However, these methods have limitations in terms of the quality of

reconstructed images and their convergence remains uncertain [269]. Another approach

to solving pr problems is through compressed sensing and optimization techniques like

wf [27], matrix lifting [26, 25, 214], mm [192] and admm [152]. This work focuses on the

wf algorithm due to being straightforward to incorporate with the dl regularizer for the
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fig 3.15 – Comparison of ssim and nrmse varying scaling factor α ∈ [0.02, 0.035] and
std of Gaussian noise σ ∈ [0.25, 1.5] defined in (3.24).

image prior. The likelihood modelling of the noise statistics existing in the measurement

is also critical. Previous studies have primarily focused on modelling either Gaussian or

Poisson likelihood only, but in practical scenarios, both types of noise are often encoun-

tered. Therefore, this work contributes to a more practical perspective of addressing the

holographic pr problem by using a pg likelihood and incorporating state-of-the-art deep

learning image priors. In the case where the measurement is contaminated with Poisson

and Gaussian noise, the speedup in reconstruction is crucial, as the bottleneck of our algo-

rithm is in computing the pg likelihood. Additionally, though it is viable to perform a large

number of neural network evaluations to perform image reconstruction, it is unrealistic

to compute a similarly large number of pg likelihoods. Thus, we perform acceleration in

wf algorithm following [141], which guarantees convergence to a critical point for the

Holographic PR problems.
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fig 3.16 – Reconstructed images by dolph [218] and our proposed awfs method under

different σ values. Scaling factor α was set to 0.02 (defined in (3.24)).
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(a) Histopathology dataset: α = 0.02.
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(b) Histopathology dataset:α = 0.0275.
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(c) Histopathology dataset: α = 0.035.
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(d) CelebA dataset: α = 0.02.
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(e) CelebA dataset: α = 0.0275.
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(f) CelebA dataset: α = 0.035.
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(g) ct-density dataset: α = 0.02.
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(h) ct-density dataset: α = 0.0275.
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(i) ct-density dataset: α = 0.035.

fig 3.17 – Comparing awfs vs. wfs with nrmse vs. number of iterations under different

noise levels. The curves and shadows represent the mean and standard deviation, respec-

tively.

In our evaluation of three datasets, we consistently observed that the use of pg like-

lihood yielded superior performance compared to using either Poisson or Gaussian like-

lihood alone, as expected. Additionally, the results obtained from the ct-density dataset
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fig 3.18 – Reconstructed images by the unregularized Poisson method (the second col-

umn) as well as with the awfs method for different scaling factors α (third to fifth

columns). The top and bottom rows show reconstructions from different measurement

realizations.

were generally of lower quality than those from the other two datasets. This can be at-

tributed to lower average counts per pixel (many zero pixels near the image borders).

Using a dl image prior can be considered from two perspectives: training a denoiser

or training to learn the density distribution of images. In our work, we applied both ap-

proaches and observed that the effectiveness of these methods differed depending on the

dataset tested. Specifically, in the Histopathology dataset [4] and the ct-density dataset,

where the images share similar structures, the generative models performs better even

when trained with limited data. In the case of the CelebA dataset [155], which includes a

wide variety of celebrity faces, generative models did not exhibit as strong performance as

denoiser methods when trained on limited data. This is likely due to the fact that generat-

ing high-quality images is generally more challenging than removing noise from existing

images and may necessitate a larger training dataset. We have also noticed that the pnp-

admm method provided unsatisfying reconstruction quality, possibly attributable to the

non-zero duality gap and slow convergence for non-convex problems [245]. We plan to

investigate it further in the future.

The effectiveness of acceleratedwf compared to vanillawf is due to the non-convexity

of the pr problem. Although recent advances in geometric landscape analysis of pr can
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guarantee that all local minimizers are global even with random initialization [23], in prac-

tice the measurements are contaminated by noise so that many more measurements are

required for the cost function to have a benign geometric landscape.

Despite the promising results achieved with our proposed awfs approach, there are

several limitations of our work. First, the approximate calculation of the infinite sum in

(3.25) is accurate but computationally expensive. Future work should seek ways to accel-

erate this calculation while maintaining accuracy. Second, we did not implement and test

the acceleratedwf applied on the diffusion posterior sampling method [46], for which the

network is fine-tuned from a pretrained state-of-the-art diffusion model. This approach

has the potential to advance current methods in pr problem and we will investigate it in

the future. Another limitation of the proposed method is that it has been demonstrated

on measurements that are based on simulations. To further demonstrate the efficacy of

the method in a real-world setting, future work should consist of evaluating the accuracy

of the methods when run on real measurement data. Finally, our experiments are limited

to real-valued images, however, our method can be extended to handle complex-values

images by splitting real and imaginary components into separate reconstruction routines

with different pretrained neural networks [279]. Addressing these limitations will be the

future direction of this work.

3.2.5 Conclusion

We proposed a novel algorithm based on Accelerated Wirtinger Flow and Score-based

image prior (awfs) for Poisson-Gaussian holographic phase retrieval. With evaluation

on simulated experiments, we demonstrated that our proposed awfs algorithm had the

best reconstruction quality both qualitatively and quantitatively and was more robust to

various noise levels, compared to other state-of-the-art methods. Furthermore, we proved

that our proposed algorithm has a critical-point convergence guarantee. Therefore, our

approach has much promise for translation in real-world applications encountering phase

retrieval problems.
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CHAPTER 4

Poisson Inverse Problems in spect Imaging
1

4.1 Training End-to-End Unrolled Iterative Neural

Networks for spect Image Reconstruction
2

4.1.1 Movitation

Although mlem and osem (introduced in Chapter 2) have achieved great success in clini-

cal uses, they are known to suffer from a trade-off between recovery and noise as well as

limited compensation for spect resolution effects. To address that trade-off, regularization-

based reconstruction methods have been proposed [188, 71, 132]. For example, Panin et

al. [188] proposed tv regularization for spect reconstruction. However, tv regulariza-

tion may lead to “blocky” images and over-smoothing the edges. One way to overcome

blurring edges is to incorporate anatomical boundary side information from ct images

[60], but that method requires accurate organ segmentation in advance. Chun et al. [44]

proposed to use nlm filters that exploit the self-similarity of patches in images for reg-

ularization, yet that method is computationally expensive and hence not quite practical.

In general, choosing an appropriate regularizer can be challenging and moreover, these

traditional regularized algorithms lack generalizability to images that do not follow as-

sumptions made by the prior.

With the recent success of deep learning and especially cnn, dl methods have been

reported to outperform conventional algorithms in many medical imaging applications

such as in mri [271, 265, 193], ct [177, 32] and pet reconstruction [195, 122, 169]. However,

fewer dl approaches to spect reconstruction appear in the literature. Shao et al. [212] pro-

posed “SPECTnet” with a two-step training strategy that learns the transformation from

projection space to image space as an alternative to the traditional osem algorithm. Shao

1
This chapter is based on [145, 143, 151].

2
This section is based on [145].
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et al. [213] also proposed a dlmethod that can directly reconstruct the activity image from

the spect projection data, even with reduced view angles. Mostafapour et al. [179] trained

a neural network that maps non-attenuation-corrected spect images to those corrected

by ct images as a post-processing procedure to enhance the reconstructed image quality.

Though promising results were reported with these methods, most of them worked

in 2D whereas 3D is used in practice [212, 213]. Furthermore, there has yet to be an inves-

tigation of end-to-end training of dl regularizers that are embedded in unrolled spect

iterative statistical algorithms such as regularized em. End-to-end training is popular in

machine learning and othermedical imaging fields such as mri image reconstruction [216],

and is reported to meet data-driven regularization for inverse problems [180]. But for

spect image reconstruction, such training is nontrivial to implement due to its compli-

cated systemmatrix. Alternative trainingmethods have been proposed, such as sequential

training [153, 203, 186, 49] and gradient truncation [169]; these methods were shown to

be effective, though they could yield sub-optimal reconstruction results due to approxima-

tions to the training loss gradient. Another approach is to construct a neural network that

also models the spect system matrix, like in “SPECTnet” [212], but this approach lacks

interpretability compared to algorithms like unrolled dl-regularized em, e.g., if one sets

the regularization parameter to zero, then the latter becomes identical to the traditional

em.

As an end-to-end training approach has not yet been investigated for spect image

reconstruction, this section first describes a spect forward-backward projector written in

the open-source and high-performance Julia language that enables efficient auto-differentiation.

Then we compare the end-to-end training approach with other alternative methods. Our

contribution is summarized as follows:

• We provide a Julia implementation of forward-backward projector for spect image

reconstruction, where the backprojector is the exact adjoint of the forward projector.

Our Julia projector supports multi-threading on CPU for accelerating computation.

We also provide an efficient Julia GPU implementation (by eliminating explicit scalar

indexing) and PyTorch implementation for completeness. Our code is open source

and is available at this link.

• Our Julia projector has comparable speed and accuracy compared to a public avail-

able Matlab-based projector
3
, while using much less memory (∼5%). Compared to

mc methods for primary component, our Julia projector achieved a good approxi-

mation while being much faster.

3
Available at http://web.eecs.umich.edu/~fessler/irt/irt.
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• Simulation results based on
177

Lu xcat phantoms and vp phantoms with
90
Y show

that the unrolled dl regularized em algorithm, when trained end-to-end with our

proposed Julia projector, achieved the best reconstruction quality evaluated by line

profiles and quantitative metrics like mae and nrmse, compared to other training

methods such as sequential training and gradient truncation (ignoring gradients

w.r.t. the forward-backward projector).

• Simulation results based on
177

Lu vp phantoms show that all learning-based meth-

ods achieved comparable reconstruction quality with the traditional osem method.

Overloaded Notations: f(·) and gθ defined in (2.5); x,A,y, r̄, h(·) defined in (2.14); uk

defined in (2.23).

4.1.2 Methods

4.1.2.1 Implementation of Julia spect projector

Our Julia implementation of spect projector is based on [272], modeling parallel-beam

collimator geometries. Our projector also accounts for attenuation and depth-dependent

collimator response. We did not model the scattering events like Compton scatter and

coherent scatter of high energy gamma rays within the object.

For the forward projector, at each rotation angle, we first rotate the 3D image matrix

x ∈ Rnx×ny×nz
according to the third dimension by its projection angle θl (typically 2π(l−

1)/nview); l denotes the view index, which ranges from 1 to nview and nview denotes the total

number of projection views. We implemented and compared both bilinear interpolation

and 3-pass 1D linear interpolation [64] with zero padding boundary condition for image

rotation. For attenuation correction, we first rotated the three-dimensional attenuation

map µ ∈ Rnx×ny×nz
(obtained by transmission tomography) also by θl. Assuming ny

is the index corresponding to the closest plane of x to the detector, then we model the

accumulated attenuation factor µ̄ for each view angle as

µ̄(i, j, k; l) = e−∆y( 1
2
µ(i,j,k;l)+

∑ny
s=j+1 µ(i,s,k;l)), (4.1)

where i, j, k denotes the 3D voxel coordinate and ∆y denotes the voxel size for the (first

and) second coordinate. Next, for each y slice (an (x, z) plane for a given j index) of

the rotated and attenuated image, we convolved with the appropriate slice of the depth-

dependent point spread function p ∈ Rpx×pz×ny×nview
using a 2D fft. Here we used repli-

cate padding for both the i and k coordinates. The view-dependent psf accommodates
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non-circular orbits. Finally, the forward projection operation simply sums the rotated,

blurred and attenuated activity image x along the second coordinate j. Algorithm 5 sum-

marizes the forward projector, where ⊛ denotes a 2D convolution operation.

Algorithm 5: spect forward projector

Input: 3D image x ∈ Rnx×ny×nz
,

3D attenuation map µ ∈ Rnx×ny×nz
,

4D point spread function p ∈ Rpx×pz×ny×nview
,

voxel size ∆y.

Initialize: v ∈ Rnx×nz×nview
as all zeros.

for l = 1, ..., nview do

x̃← rotate x by θl
µ̃← rotate µ by θl
for j = 1, ..., ny do

µ̄← calculate by (4.1) using µ̃
x̃(i, j, k) ∗= µ̄(i, j, k)
v(i, k, l) += x̃(i, j, k; l)⊛ p(i, k; j, l)

end

end

Output: v ∈ Rnx×nz×nview

All of these steps are linear, so hereafter, we use A to denote the forward projector,

though it is not stored explicitly as a matrix. Because each each step is linear, each step

has an adjoint operation. Overall, the backward projector is the adjoint ofA that satisfies

⟨Ax,y⟩ = ⟨x,A′y⟩, ∀x,y. (4.2)

The exact adjoint of (discrete) image rotation is not simply a discrete rotatation of the

image by −θl. Instead, one should also consider the adjoint of linear interpolation. For

the adjoint of convolution, we assume the point spread function is symmetric along coor-

dinates i and k so that the adjoint convolution operator is just the forward convoluation

operator along with the adjoint of replicate padding. Algorithm 6 summarizes the spect

backward projector.

To accelerate the for-loop process, we used multi-threading to enable projecting or

backprojecting multiple angles at the same time. To reduce memory, we pre-allocated

necessary arrays and used fully in-place operations inside the for-loop. To further accel-

erate auto-differentiation, we customized the chain rule to use the linear operator A or

A′
as the Jacobian when calling Ax or A′y during backpropagation. We implemented

and tested our projector in Julia v1.6; we also implemented a GPU version in Julia (us-

ing CUDA.jl) that runs efficiently on a GPU by eliminating explicit scalar indexing. For
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Algorithm 6: spect backward projector

Input: 3D view v ∈ Rnx×nz×nview
,

3D attenuation map µ ∈ Rnx×ny×nz
,

4D point spread function p ∈ Rpx×pz×ny×nview
,

voxel size ∆y.

Initialize: x ∈ Rnx×ny×nz
as all zeros.

for l = 1, ..., nview do

µ̃← rotate µ by θl
for j = 1, ..., ny do

µ̄← calculate by (4.1) using µ̃
ṽ(i, k, l)← adjoint of v(i, k, l)⊛ p(i, k, j, l)
x̃(i, j, k; l)← ṽ(i, k, l) · µ̄(i, j, k; l)

end

x += adjoint rotate x̃ by θl
end

Output: x ∈ Rnx×ny×nz

completeness, we also provide a PyTorch version but without multi-threading support,

in-place operations nor the exact adjoint of image rotation.

4.1.2.2 Unrolled dl regularized em algorithm

The dl regularized em algorithm is summarized in Algorithm 1. To train gθ, the most

direct way is to unroll the em algorithm and train end-to-end with an appropriate tar-

get; this supervised approach requires backpropagating through the spect system model,

which is not trivial to implement with previous spect projection tools. There are several

non-end-to-end training methods such as sequential training [153] that first train uk by

the target and then plug into (2.26) at each iteration. This method must use non-shared

weights for the neural network per each iteration. Another method is gradient trunca-

tion [169] that ignores the gradient w.r.t. the system matrix A and its adjoint A′
during

backpropagation. Both of these training methods, though reported to be effective, may be

sub-optimal because they approximate the overall training loss gradients.

4.1.2.3 Phantom Dataset and Simulation Setup

We used simulated xcat phantoms [209] and virtual patient phantoms for experiment

results presented in the next section. Each xcat phantomwas simulated to approximately

follow the activity distributions observed when imaging patients after
177

Lu dotatate

therapy. We set the image size to 128 × 128 × 80 with voxel size 4.8 × 4.8 × 4.8mm3
.
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Tumors of various shapes and sizes (5-100mL) were located in the liver as is typical for

patients undergoing this therapy.

For virtual patient phantoms, we consider two radionuclides:
177

Lu and
90
Y. For

177
Lu

phantoms, the true images were from pet/ct scans of patients who underwent diagnostic

68
Ga dotatate pet/ct imaging (Siemens Biograph mCT) to determine eligibility for

177
Lu dotatate therapy. The

68
Ga dotatate distribution in patients is expected to

be similar to
177

Lu and hence can provide a reasonable approximation to the activity

distribution of
177

Lu in patients for dl training purposes but at higher resolution. The

pet images had size 200 × 200 × 577 and voxel size 4.073 × 4.073 × 2 mm
3
and were

obtained from our Siemens mCT (resolution is 5–6 mm fwhm [221]) and reconstructed

using the standard clinic protocol: 3D osem with three iterations, 21 subsets, including

resolution recovery, time-of-flight, and a 5mm (fwhm) Gaussian post-reconstruction filter.

The density maps were also generated using the experimentally derived ct-to-density

calibration curve.

For
90
Y phantoms, the true activity images were reconstructed (using a previously

implemented 3D osem reconstruction with cnn based scatter estimation [255]) from
90
Y

spect/ct scans of patients who underwent
90
Y microsphere radioembolization in our

clinic.

In total, we simulated 4 xcat phantoms, 8
177

Lu and 8
90
Y virtual patient phantoms.

All image data have University of Michigan Institutional Review Board (IRB) approval for

retrospective analysis. For all simulated phantoms, we selected the center slices covering

the lung, liver and kidney corresponding to spect axial fov (39cm).

Then we ran SIMIND mc program [156] to generate the radial position of spect cam-

era for 128 view angles. The SIMIND model parameters for
177

Lu were based on
177

Lu

dotatate patient imaging in our clinic (Siemens Intevo with medium energy collimators,

a 5/8" crystal, a 20% photopeak window at 208 keV, and two adjacent 10% scatter windows)

[61]. For
90
Y, a high-energy collimator, 5/8" crystal, and a 105 to 195 keV acquisition energy

window was modeled as in our clinical protocol for
90
Y bremsstrahlung imaging. Next we

approximated the point spread function for
177

Lu and
90
Y by simulating point source at 6

different distances (20, 50, 100, 150, 200, 250mm) and then fitting a 2D Gaussian distribu-

tion at each distance. The camera orbit was assumed to be non-circular (auto-contouring

mode in clinical systems) with the minimum distance between the phantom surface and

detector set at 1 cm.
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4.1.3 Experiment Results

4.1.3.1 Comparison of Projectors

We used an xcat phantom to evaluate the accuracy and memory-efficiency of our Julia

projector.

Accuracy.Wefirst compared primary projection images and profiles generated by our

Julia projector with those from mc simulation and the Matlab projector. For results of mc,

we ran two SIMIND simulations for 1 billion histories using
177

Lu and
90
Y as radionuclide

source, respectively. Each simulation took about 10 hours using a 3.2 GHz 16-Core Intel

Xeon W CPU on MacOS. The Matlab projector was originally implemented and compiled

in C99 and thenwrapped by aMatlabMEX file as a part of theMichigan Image Reconstruc-

tion Toolbox (MIRT) [72]. The physics modelling of the Matlab projector was the same as

our Julia projector except that it only implemented 3-pass 1D linear interpolation for im-

age rotation. Unlike the memory-efficient Julia version, the Matlab version pre-rotates the

patient attenuation map for all projection views. This strategy saves time during em itera-

tions for a single patient, but uses considerable memory and scales poorly for dl training

approaches involving multiple patient datasets.

Fig. 4.1 compared the primary projections generated by different methods without

adding Poisson noise. Visualizations of image slices and line profiles illustrate that our

Julia projector (with rotation based on 3-pass 1D interpolation) is almost identical to the

Matlab projector, while both give a reasonably good approximation to the mc.

Speed and Memory Use. We then compared the memory use and compute times

between our Julia projector and the Matlab projector using different number of threads

when projecting a 128×128×80 image. Fig. 4.2 shows that our Julia projector has compa-

rable computing time for a single projection with 128 view angles using different number

of CPU threads, while only uses a very small fraction of memory (∼5%) and pre-allocation
time (∼1%) compared to the Matlab projector.

4.1.3.2 Comparison of dl-regularized em Using Different Training Methods

This section compares end-to-end training with other training methods that have been

used previously for spect, namely the gradient truncation and sequential training. We

implemented an unrolled dl-regularized em algorithm with 3 outer iterations, each of

which had one inner iteration. Here we used only 3 outer iterations (compared to previ-

ous works such as [169]) because we used the 16-iteration 4-subset osem reconstructed
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Y) (g) Julia 2D (

90
Y) (h) Matlab (

90
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Lu vert. profile (k)
90
Y hori. profile (l)

90
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fig 4.1 – Projections generated by mc simulation, Matlab projector and our Julia projector

with 3-pass 1D linear interpolation and 2D bilinear interpolation for image rotation, using

177
Lu and

90
Y radionuclides. Subfigure (i)-(l) show line profiles across tumors as shown

in subfigure (a) and (e), respectively. mc projections were scaled to have the same total

activities as the Matlab projector per fov.

image as a warm start for all reconstruction algorithms. We set the regularization param-

eter (defined in (2.5)) as β = 1. The dl regularizer was a 3-layer 3D cnn, where each

layer had a 3 × 3 × 3 convolutional filter followed by relu activation (except the last

layer). We added the input image xk to the output of cnn following the common residual

learning strategy [92]. End-to-end training and gradient truncation could also work with

a shared weights cnn approach, but were not included here for fair comparison purpose,

since the sequential training only works with non-shared weights cnn. All the neural net-

works were initialized by with the same parameters (drawn from a Gaussian distribution)

and trained on an Nvidia RTX 3090 GPU by minimizing mean square error (loss) using

AdamW optimizer [159] with a constant learning rate 0.002.
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fig 4.2 – Time andmemory comparison betweenMatlab projector and our Julia projector

for projecting 128 view angles of a 128× 128× 80 image. “time pre” denotes the time cost

for pre-allocating necessary arrays before projection; “time proj” denotes the time cost

for a single projection; “mem” denotes the memory usage. All methods were tested on

MacOS with a 3.8 GHz 8-Core Intel Core i7 CPU.

Besides line profiles for qualitative comparison, we also used mae and nrmse as quan-

titative evaluation metrics. All activity images were scaled by a factor that normalized the

whole activity to 1 MBq per fov before comparison.

Results on
177

Lu xcat Phantoms. We evaluated these reconstruction algorithms

using 4
177

Lu xcat phantoms we simulated. We generated the primary projections by

calling forward operation of our Julia projector and then added uniform scatters with 10%

of the primary counts before adding Poisson noise. Of the 4 phantoms, we used 2 for

training, 1 for validation and 1 for testing.

Fig. 4.3 shows that the end-to-end training yielded incrementally better reconstruction

of the tumor in the liver center over osem, sequential training and gradient truncation.

Fig. 4.3 (g) also illustrates this improvement by the line profile across the tumor. For the

tumor at the top-right corner of the liver, all methods had comparable performance; this

can be attributed to the small tumor size (5mL) for which pv effects associated with spect

resolution are higher; and hence its recovery is even more challenging.

Table 4.1 demonstrates that all dl methods (sequential training, gradient truncation

and end-to-end training) consistently had lower reconstruction error than the traditional
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fig 4.3 – Qualitative comparison of different training methods and osem tested on
177

Lu

xcat phantoms. Subfigure (a)-(c): true activity map, attenuation map and osem recon-

struction (16 iterations and 4 subsets); (d)-(f): regularized em using sequential training,

gradient truncation, end2end training, respectively; (g) and (h): line profiles in (a).

osem method. Among all dl methods, the proposed end-to-end training had lower mae

over nearly all lesions and organs than other training methods. The relative reduction

in mae by the end-to-end training was up to 36% (for lesion 3) compared to sequential

training. End-to-end training also had lower nrmse for most lesions and organs, and was
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otherwise comparable to other training methods. The relative improvement compared to

sequential training was up to 29% (for lesion 3).

tbl 4.1 – mae(%) and nrmse (%) for
177

Lu xcat phantoms.

mae

Lesion/Organ osem Sequential Truncation End2end

Lesion 1 (67mL) 11.8 4.7 3.8 3.4

Lesion 2 (10mL) 19.2 8.8 9.8 8.5

Lesion 3 (9mL) 25.1 19.2 14.5 12.3

Lesion 4 (5mL) 42.5 39.7 37.9 37.9

Liver 5.6 4.5 3.4 2.3

Lung 3.0 2.4 1.3 1.2

Spleen 13.2 10.3 8.1 7.6

Kidney 14.8 13.7 12.8 11.8

nrmse

Lesion/Organ osem Sequential Truncation End2end

Lesion 1 (67mL) 27.3 20.2 19.5 19.0

Lesion 2 (10mL) 26.1 17.6 16.2 15.4

Lesion 3 (9mL) 28.0 22.2 17.6 15.8

Lesion 4 (5mL) 43.0 40.9 39.2 39.5

Liver 28.5 24.3 24.6 24.8

Lung 32.2 30.7 29.7 30.7

Spleen 25.3 21.6 20.0 19.3

Kidney 40.7 39.4 39.5 39.0

Results on
177

Lu vp Phantoms. Next we present test results on 8
177

Lu virtual

patient phantoms. Out of 8
177

Lu phantoms, we used 4 for training, 1 for validation and 3

for testing.

Fig. 4.4 shows that the improvement of all learning-based methods was limited com-

pared to osem, which is also evident from line profiles. For example, in Fig. 4.4 (g), where

the line profile is drawn on a small tumor. We found that osem already gave a fairly ac-

curate estimate, so we did not observe as much improvement as we had seen on
177

Lu

xcat phantoms for end-to-end training or even learning-based methods. Table 4.2 also

demonstrates this behavior. The osem method had substantially lower mae and nrmse

compared to the errors shown for
177

Lu xcat data (cf Table 4.1). Moreover, all learning-

based methods had comparable accuracy. For example, sequential training performed the
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best on lesions; gradient truncation was the best on liver and lung in terms of mae; end-

to-end training had the lowest nrmse on kidney and spleen. Perhaps this could be due to

different local minimizers were reached when training neural networks; a more compre-

hensive study would be needed to verify this conjecture.

1 85

1

65

Line 1

Line 2

(a) True activity

1 85

1

65

(b) Attenuation map

1 85

1

65

(c) osem

1 85

1

65

(d) Sequential

1 85

1

65

(e) Truncation

1 85

1

65

(f) End2end

0 5 10 15 20 25

Distance (mm)

1

1.5

2

2.5

3

3.5

4

C
ou

nt
s

10 -5

True activity
OSEM
Sequential
Truncation
End2end

(g) Line 1 profile

0 5 10 15 20 25 30 35 40

Distance (mm)

1

1.5

2

2.5

3

3.5

4

4.5

5

C
ou

nt
s

10 -5

True activity
OSEM
Sequential
Truncation
End2end

(h) Line 2 profile

fig 4.4 – Qualitative comparison of different training methods and osem tested on
177

Lu

vp phantoms. Subfigure (g) and (h) correspond to line profiles marked in (a).
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tbl 4.2 – mae(%) and nrmse(%) for
177

Lu vp phantoms.

mae

Lesion/Organ osem Sequential Truncation End2end

Lesion (6-152mL) 6.1 5.0 5.6 5.3

Liver 4.2 3.6 1.5 2.2

Healthy liver 3.8 4.1 2.0 2.2

Lung 4.5 3.8 1.2 2.6

Kidney 5.7 4.9 2.3 2.3

Spleen 1.6 1.4 2.4 1.8

nrmse

Lesion/Organ osem Sequential Truncation End2end

Lesion (6-152mL) 17.5 16.7 17.7 16.8

Liver 19.5 18.9 19.0 19.0

Healthy liver 21.6 21.3 21.8 21.8

Lung 23.2 23.0 25.5 24.9

Kidney 18.6 17.9 17.3 16.9

Spleen 15.1 13.7 13.1 12.5

Results on
90
Y vp Phantoms. For completeness, we also tested with 8

90
Y virtual

patient phantoms. Of the 8 phantoms, we used 4 for training, 1 for validation and 3 for

testing.

Fig. 4.5 compares the reconstruction quality among osem, sequential training, gra-

dient truncation and end-to-end training on two test slices (subfigure (a)-(f) and (g)-(l)).

Visually, the end-to-end training reconstruction gives the closest estimate to the true ac-

tivity, this is also evident through the line profiles (subfigure (m) and (n)) across the tumor

and the liver.

Table 4.3 reports the mae and nrmse for lesions and organs across all testing phan-

toms. Similar to the qualitative assessment (Fig. 4.5), the end-to-end training also produced

lower errors consistently across all testing lesions and organs. For instance, compared to

sequential training/gradient truncation, the end-to-end training reduced mae on average

by 20.7%/13.2%, 35.0%/22.9% and 55.6%/42.7% for lesion, healthy liver and lung, respec-

tively. The nrmse was also reduced by 14.5%/7.3%, 16.0%/9.2% and 15.7%/6.7% for lesion,

healthy liver and lung, respectively. All learning-based methods consistently had lower

errors than the osem method.
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tbl 4.3 – mae(%) and nrmse(%) for
90
Y vp phantoms.

mae

Lesion/Organ osem Sequential Truncation End2end

Lesion (3-356mL) 33.9 26.6 24.3 21.1

Liver 25.1 18.5 16.3 11.6

Healthy liver 25.3 24.3 20.5 15.8

Lung 90.2 65.7 51.0 29.2

nrmse

Lesion/Organ osem Sequential Truncation End2end

Lesion (3-356mL) 37.0 31.1 28.7 26.6

Liver 30.2 22.7 21.3 19.6

Healthy liver 32.0 28.2 26.1 23.7

Lung 63.4 59.8 54.0 50.4

4.1.3.3 Results at intermediate iterations

One potential problem associated with end-to-end training (and gradient truncation) is

that the results at intermediate iterations could be unfavorable, because they are not di-

rectly trained by the targets [127]. Here, we examined the images at intermediate iterations

and did not observe any problems as illustrated in Fig. 4.6, where images at each iteration

gave a fairly accurate estimate to the true activity. Perhaps under the shallow-network set-

ting (e.g., 3 layers used here, with only 3 outer iterations), the network for each iteration

was less likely to overfit the training data. Another reason could be due to the non-shared

weights setting so that the network could learn suitable weights for each iteration.

4.1.4 Discussion

In previous dl-based iterative algorithms for spect image reconstruction, the neural net-

works were trained either sequentially [153] or with gradient truncation [170], due to

memory inefficient forward-backward projectors so that backpropagating through the

projectors is not easy. This work investigated a new spect projector using Julia that is

an open-source, high performance and cross-platform language. With comparisons be-

tween mc and a public available Matlab-based projector, we verified the accuracy, speed

and memory-efficiency of our Julia projector. These favorable properties support efficient

backpropagation when training end-to-end unrolled iterative reconstruction algorithms.

Most modern dl algorithms process multiple data batches in parallel, so memory effi-

ciency is of great importance for efficient training and testing neural networks. To that
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extent, our Julia projector is much more suitable than our previously developed Matlab-

based projector.

We used a simple regularized em algorithm as an example to test end-to-end training

and other training methods on different datasets including
177

Lu xcat phantoms,
177

Lu

and
90
Y virtual patient phantoms. Simulation results demonstrated the effectiveness of

end-to-end training on these datasets. For example, end-to-end training improved the mae

of lesion/liver in
90
Y phantoms by 21%/37% and 13%/29% compared to sequential training

and gradient truncation. This improvement could be attributed to a better dl regularizer

when trained in end-to-end fashion. Although the end-to-end training yielded the lowest

reconstruction error on both
177

Lu xcat phantoms and
90
Y vp phantoms, the reconstruc-

tion errors on
177

Lu vp phantoms were comparable for all methods. This could be due to

cnn architecture choice and hyperparameters (such as number of iterations) in the em

algorithm, which we will explore in the future. Another reason could be with the nonuni-

form activity in vp phantoms where the recovery is generally higher than activity for the

xcat phantom (mae reported in Table 4.1 and Table 4.2) because the assigned “true” activ-

ities at the boundaries of organs did not drop sharply, and instead, were blurred out. And

therefore the osem algorithm was fairly competitive as reported in Table 4.2; in
90
Y vp

results, the osem performs worse than learning-based methods, which could be attributed

to the high downscatter associated with
90
Y spect due to the continuous bremsstrahlung

energy spectrum.

We found all learning methods did not work very well for small tumors (e.g., 5mL),

potentially due to the worse pv effect. Reducing pv effects in spect images has been

studied extensively [190, 89]. Xie et al. [257] trained a deep neural network to learn the

mapping between pv-corrected and non-corrected images. Incorporating their network

into our reconstruction model using transfer learning is an interesting future direction.

Although the previous sections showed promising results, this work has several limita-

tions. First, we did not test numerous hyperparameters and cnn architectures, nor with a

wide variety of phantoms and patients for different radionuclides therapies. Another lim-

itation is that we did not investigate more advanced parallel computing methods such as

distributed computing using multiple computers to further accelerate our Julia implemen-

tation of spect forward-backward projector. Such acceleration is feasible using existing

Julia packages if needed. The compute times reported in Fig. 4.2 show that the method

needs a few seconds per 128 projection views using 8 threads, which is already feasible

for scientific investigation. Finally, we did not explore the effect of model mismatch be-

tween our Julia projector and mc simulation when plugged into the end-to-end training
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framework, but we expect the neural network can learn to compensate for the mismatch

after training.

4.1.5 Conclusion

This section presents a Julia implementation of a backpropagatable spect forward-backward

projector that is accurate, fast and memory-efficient compared to mc and a previously de-

veloped analytical Matlab-based projector. Simulation results based on
177

Lu xcat phan-

toms,
90
Y and

177
Lu vp phantoms demonstrate that: 1) End-to-end training yielded the

lowest mae and nrmse when tested on xcat phantoms and
90
Y vp phantoms, compared

to other training methods (such as sequential training and gradient truncation) and osem.

2) For
177

Lu vp phantoms, we observed all training methods yielded comparable recon-

struction results as the osem method. These results indicate that end-to-end training,

which is feasible with our developed Julia projector, is worth investigating for spect re-

construction.

4.2 DblurDoseNet: A Deep Neural Network for spect

Dosimetry Estimation and Resolution Recovery
4

4.2.1 Motivation

Accurate and computationally efficient methods for patient-specific absorbed dose esti-

mation are also essential for clinical implementation of dosimetry-guided treatment plan-

ning in radionuclide therapy. For example, current
177

Lu dotatate therapy for neuroen-

docrine tumors uses a fixed activity basis (4 cycles of 7.4 GBq), whereas spect/ct imaging-

based dosimetry after one cycle can be used to individualize the next administration to

potentially enhance tumor response while keeping toxicity to critical organs like kidney

at an acceptable level [66]. Traditionally, the mean absorbed doses in volumes of interest

(voi) are the reported quantity. However, voxel-level calculation enables consideration

of multiple alternative dose metrics, such as statistics from dose-rate volume histogram

(drvh) analyses that are potentially more relevant to treatment planning. Explicit mc ra-

diation transport using the patient’s emission (pet or spect) and anatomical images (ct)

as input is broadly accepted as the gold standard for voxel-level patient-specific dosimetry;

however, it is computationally expensive to generate estimates with low statistical uncer-

tainty. In contrast, faster and simpler dvk convolution methods [19] can be inaccurate in

4
This section is based on [143].
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the presence of heterogeneous tissues, e.g., at the liver-lung or bone-marrow interfaces.

Moreover, even though mc is theoretically accurate, the dose accuracies of both mc and

dvk methods are degraded by reconstruction artifacts and the limited spatial resolution

of spect and pet images.

There is an increased interest in studies that apply deep neural networks in nuclear

medicine applications [237, 281, 210, 239, 5]. However, deep learning applications in ra-

dionuclide therapy dosimetry are limited [3, 138, 85, 84]. Akhavanallaf et al. [3] employed

a modified ResNet [92] that represented voxel S-values kernels [19] to predict the distri-

bution of the deposited energy in whole-body organ-level dosimetry and demonstrated

comparable performance to the direct mc approach. Lee et al. [138] implemented a 3D

UNet [201] that used pet and ct-based density image patches to predict 3D voxel-level

dose-rate maps. Götz et al. [85] proposed a hybrid method based on a combination of a

modified UNet and an empirical mode decomposition of densitymaps to enhance the accu-

racy/reliability of radiation dose estimation. Götz et al. [84] also trained a neural network

to predict dvk for dosimetry in
177

Lu targeted radionuclide therapies. Despite promising

results, a limitation of the training approaches in these prior studies [3, 138, 85, 84] is that

they used mc-generated dose-rate maps derived from each patient’s measured spect or

pet images as the training label, which are degraded by the camera spatial resolution and

reconstruction artifacts. Moreover, the concept of residual learning can be adopted in a

cnn dosimetry model by exploiting a fast dvk convolution dose-rate map as an initial

estimate. Residual learning for image denoising was first proposed to improve the effec-

tiveness and efficiency of a denoising cnn [277] and was further applied to low-dose pet

and ct reconstruction [259, 33].

The aim of this study was to develop a deep learning-based absorbed dose-rate estima-

tion method that can overcome the accuracy-efficiency trade-off associated with current

voxel dosimetry methods and attempt to learn to reduce the degrading effects of spatial

resolution and reconstruction artifacts. Specifically, we used dose-rate estimates directly

corresponding to phantom (virtual patient) activity maps as the training label, instead of

the patient spect-derived dose-rate images (Fig. 4.7). Furthermore, unlike prior studies

where a cnn was trained to directly estimate the dose-rate map or S-value kernels, we

first used the approximate physics-based fast Fourier transform (fft) dvk convolution

method (with density scaling) to produce initial estimates, and then trained the cnn to

learn the subtle residual differences between the initial estimate and the true dose-rate

maps. We trained and tested the proposed cnn for spect/ct imaging-based dosimetry

following
177

Lu dotatate therapy of neuroendocrine tumors (NETs).
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4.2.2 Methods

4.2.2.1 Virtual Patient Phantom Generation for Training and Testing

Fig. 4.8 is an overview of our data generation and training process. To define the true activ-

ity maps of virtual patient phantoms, we chose to use pet instead of spect-based activity

maps because pet offers substantially higher spatial resolution than spect as evident in

the top branch of Fig. 4.8. These images were readily available because, prior to
177

Lu

dotatate, patients underwent diagnostic
68
Ga dotatate pet/ct imaging (Siemens Bi-

ograph mCT) to determine eligibility for therapy.

The
68
Ga dotatate distribution in patients is expected to be similar to the

177
Lu

dotatate distribution and hence our virtual patient phantoms can provide a reason-

able approximation to the activity distribution of
177

Lu patients. The pet images (of size

200 × 200 × 577, voxel size is 4.073 × 4.073 × 2mm3
) were obtained from our Siemens

mCT (resolution is 5-6mm fwhm [222]) and reconstructed using the standard clinic proto-

col: 3D osem with 3 iterations, 21 subsets that included resolution recovery, time-of-flight

(tof), and a 5mm (fwhm) Gaussian post-reconstruction filter. We selected 14 such pet

images from our clinic database to generate anthropomorphic phantoms for training and

testing, with University of Michigan Institutional Review Board (IRB) approval for retro-

spective analysis. The selected cases covered a diverse range with regards to sex (9 males

and 5 females), age (35 to 88 years), weight (49 kg to 100 kg), and lesions of different sizes

and location (within and outside the liver). The pet/ct images were first extracted into

195 slices with 0.2 cm slice width that covered the spect field-of-view (39 cm) with the

liver and kidney centered, which is the typical region imaged following
177

Lu dotatate.

Meanwhile, the corresponding density maps were generated using an experimentally de-

rived ct-to-density calibration curve.

Next,
177

Lu spect projections corresponding to each phantom’s activity/densitymaps

were generated using the SIMIND mc code [156] (Fig. 4.8 top branch) simulating approx-

imately 2 billion histories per projection. The SIMIND model parameters were based on

177
Lu patient imaging in our clinic (Siemens Intevo with medium energy collimators, a

5/8” crystal, a 20% photopeak window at 208 keV and two adjacent 10% scatter windows).

Poisson noise was simulated after the 128 projection views were scaled to a count-level

in the range of 3 to 20 million total counts, corresponding to the range in post-therapy

imaging. spect reconstruction used an in-house 3D osem algorithm with ct-based at-

tenuation correction, triple energy window scatter correction and collimator-detector

response modeling (4 subsets and 16 iterations, 128 × 128 × 81 matrix with voxel size

74



4.8× 4.8× 4.8mm3
, no Gaussian smoothing). All images were finally registered into ct

image space (512× 512× 130 with voxel size 0.98× 0.98× 3mm3
).

Out of 14 virtual patient phantoms, we randomly selected 9 for training and 5 for

testing. Out of the training dataset, to assess under/over-fitting, we randomly selected

20% of the total slices to serve as a validation dataset.

4.2.2.2 Patient Data

In addition to the above virtual patients, our testing data included a total of 42 scans from

12 patients imaged at up to 4 time points during the first week following cycle 1 of standard

177
Lu dotatate (7.4 GBq). The images were acquired as part of an ongoing University

of Michigan IRB approved research study, where all subjects signed an informed consent

form. spect acquisition time was 25 minutes and all other spect imaging reconstruction

parameters were as described above for the phantom simulation. The ct was performed

in low-dose mode (120 kVp; 15 – 80 mAs) with free breathing.

4.2.2.3 Monte Carlo Dosimetry and Dose Voxel Kernel Convolution

Monte Carlo. The Monte Carlo code that we used, called Dose Planning Method (dpm),

was originally developed and validated for fast dose-rate estimation in external beam

radiotherapy [211]. Previously, we adapted and benchmarked dpm for internal radionu-

clide therapy applications [252]. Because dpm was optimized specifically for voxel-level

electron/photon dose computations with full radiation transport, it is faster than using

general-purpose mc codes for voxel-level dose estimation. We used dpm to generate the

ground truth training labels (Fig. 4.8) by simulating approximately 1 billion histories to

generate dose-rate maps with reasonably low statistical uncertainty. For example, with 1

billion histories for the phantom results shown in Fig. 4.10 and Fig. 4.11, the average sta-

tistical uncertainty across the kidney and lesions was less than 0.1% for both the ground

truth mc run and the spect +mc run. (Obtained from the uncertainty images available

from dpm).

dvk Convolution with Density Scaling. To provide dvk dose-rate maps for resid-

ual learning,
177

Lu soft tissue (1.04g/cm3
) voxel kernels were generated using dpm. The

beta particle kernel size was 9× 9× 9 and the photon kernel size was 99× 99× 99 (both

with voxel size 0.98× 0.98× 3mm3
). We convolved the spect image with the dvk using

fast Fourier transform (fft)-convolution. Since using homogeneous soft tissue kernels

neglects tissue inhomogeneities, we applied density scaling that has been shown to be a

reasonable correction in past reports [65]. Here, after convolution, each voxel was scaled
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by 1.04 (g/cm3
) and divided by the local voxel density value (g/cm3

) derived from the ct

scan. Because our goal was to generate a reasonably accurate and quick initial estimate

for the residual learning process, we did not pursue other more sophisticated approaches

[83, 137] that account for tissue heterogeneities. To address the very high dose-rate esti-

mate in extra low-density regions, e.g., air gaps, we set the dose-rate in regions where the

density is less than 0.1 g/cm3
to zero.

4.2.2.4 Network: DblurDoseNet

Our network design considers the decay properties of
177

Lu and the physics of beta/photon

interaction in tissue. The mean energy of the emitted electrons in the beta decay of
177

Lu

is 134 keV and the maximum energy is 497 keV, and the corresponding continuous slowing

down approximation (CSDA) ranges (in water) are 0.3 mm and 1.8 mm, respectively [21].

The gamma-rays associated with
177

Lu are low in intensity (113 keV (6.2%) and 208 keV

(10.4%)), and hence, the absorbed dose is dominated by the beta component.

The input to the dvk method was an entire 3D spect image volume and its output

was a 3D dose-rate map. In principle, a cnn could be designed similarly. However, for

177
Lu considering the short beta particle range in tissue and the low photon contribution,

we designed a more memory efficient cnn that used a pack of 11 adjacent slices of the

spect and density images at a time to produce one output dose-rate map corresponding

to the middle slice of that pack. The cnn was applied with an 11-slice sliding window to

all axial slices using padding that replicated the first and last slices at the top and bottom

boundaries, respectively. Thus, the input to cnn was two arrays of size 512 × 512 × 11

(with voxel size 0.98× 0.98× 3mm3
) and the output was an array of size 512× 512 that

corresponded to the dosimetry of the middle slice in the input arrays. During training

and testing, these 512× 512× 11 packs could be processed sequentially, but GPU devices

could accelerate the processing by parallel computation.

As shown in Fig. 4.9, we first concatenated the input activity/density maps along the

channel dimension, and then applied three 3D convolutional layers (with kernel size 7×
7×5, 7×7×3, 7×7×3, respectively) to extract depth features. Next, we implemented a 2D

U-Net [201] that had 4 down-sample and up-sample layers, where the first convolutional

layer in the 2D U-Net had 16 filters. After each down-sample layer, the number of filters

at the next convolutional layer was increased by a factor of 2 until it reached 128. We

added the dvk dose-rate map to the 2D U-Net output, as in the common residual learning

approach. Finally, we obtained the cnn dose-rate map estimate after setting the dose-rate

value in very low-density voxels (ρ < 0.1g/cm3
) to zero.
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The cnn was trained by minimizing the mean square error between the ground-truth

and cnn dose-rate maps using a batch size of 32. We used the Adam optimizer [124] with

a dynamic learning rate (an initial value 0.001 with ReduceOnPlateau management strat-

egy) and trained our cnn for 200 epochs on two Nvidia Tesla V100 GPUs. The train-

ing/validation loss converged visually to 288/410 after 4 hours of training. To cover dif-

ferent input count levels, we normalized each spect activity map so that all its voxels

summed to one, and then inversely scaled the dose-rate map estimate accordingly. To po-

tentially improve convergence during training, we also scaled the normalized spect and

dose-rate maps with a constant value so that they have a similar range as the density

maps.

4.2.2.5 Evaluation in Test Phantoms

In test phantoms, we used mc with the phantom activity and density maps to calculate

the ground truth dose-rate maps for performance evaluation. The estimated dose-rate

maps generated from spect/ct with the dvk (with density scaling), mc (with 1 billion

histories) and cnn methods were evaluated qualitatively by visual comparison of images,

line profiles and dose-rate-volume histograms (drvh) with those corresponding to the

ground truth. For quantitative evaluations, we used the following metrics:

1. Dose-rate error. For each volume of interest (voi), the dose-rate error is the abso-

lute error across the whole voi calculated relative to the ground truth. This error

was calculated for the mean absorbed dose and drvh statistics (DR10, DR30, DR70,

DR90), corresponding to the minimum dose-rate to 10%, 30%, 70%, 90% of the voi,

respectively.

2. Normalized root mean square error (nrmse).

3. Ensemble noise. The ensemble noise in spherical vois defined in non-tumoral liver

or spleen was calculated across 3 (M=3) Poisson noise realizations as:

Noise =

√
1
np

∑
j∈VOI

(
1

M−1

∑M
m=1 (x̂m[j]− µj)

2
)

1
np

∑
j∈VOI µj

× 100%, (4.3)

where

µj ≜
1

M

M∑
m=1

x̂m[j], (4.4)
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where np is the total number of voxels in the voi, x̂m[j] denotes the jth voxel in

the estimated dose-rate image of themth Poisson noise realization.

The lesion vois for these quantitative evaluations were defined manually on ct of

spect/ct-guided by baseline diagnostic ct or mri by a radiologist with abdomen imaging

expertise. Organ contours were defined using semi-automatic ct segmentation tools. The

healthy liver was defined as liver minus lesions in the liver.

4.2.3 Results

4.2.3.1 Virtual Patient Phantom Test Results

Qualitative Assessment. Generally, there was better visual agreement between cnn

dose-ratemaps and the ground-truth than between dvk/mc dose-ratemaps and the ground-

truth. The example images and line profiles in Fig. 4.10 and Fig. 4.11 and the drvhs in

Fig. 4.12 provide qualitative evidence of the superior performance of the cnn across mul-

tiple regions (kidney, abdominal lesion, lung lesion).

Quantitative Assessment. Fig. 4.13 compares themean dose-rate error and nrmse in

lesions and organs across all test phantoms. Similar to the results of the qualitative assess-

ment (Fig. 4.10, Fig. 4.11 and Fig. 4.12 ), the cnn also consistently showed superior results

compared to dvk and mc in quantitative evaluations (Fig. 4.13). For instance, compared to

dvk and mc, the cnn estimates showed an average improvement (in mean dose-rate er-

ror) of 52%/20%, 55%/53%, 66%/50%, 66%/62%, 48%/49% and 58%/39% in healthy liver, lesion,

left kidney, right kidney, spleen and lumbar vertebra, respectively. The nrmse was also

substantially lower for the cnn than for dvk and mc across all vois (Fig. 4.13). The aver-

age improvement (in nrmse) demonstrated by the cnn compared to dvk/mcwas 10%/9%,

18%/17%, 11%/12%, 9%/10%, 26%/27% and 18%/10% in healthy liver, lesion, left kidney, right

kidney, spleen and lumbar vertebra, respectively. In addition to the improvement in the

average values, the maximum errors (denoted by the error bars in Fig. 4.13) were also

consistently lower with cnn compared to dvk and mc. In Fig. 4.13, all three methods

showed the highest errors for lesion and lumbar vertebra regions. This was attributed to

the smaller size of these vois compared to other organs and the corresponding increase in

partial volume effects. In the case of lumbar vertebra, relevant to bone marrow dosimetry,

the very low uptake in these regions also contributed to higher dose-rate errors. For le-

sions and lumbar vertebra that had a relatively large sample size (15 and 18), a paired t-test

demonstrated that the differences of mean dose-rate error and nrmse between cnn and

mc (dvk), as shown in Fig. 4.13, were statistically significant. Moreover, drvhs statistics
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(DR10, DR30, DR70, DR90) as demonstrated in Fig. 4.13 also shows the superiority of the

cnn compared to dvk.

Noise Evaluation. Table 4.4 shows a consistent reduction of ensemble noise in back-

ground vois with an average of 21% and 27% improvement demonstrated by the cnn

compared to dvk and mc (running 1 billion histories), where mc had the highest level of

noise due to its statistical nature.

tbl 4.4 – Ensemble noise from 3 realizations for dvk, mc and cnn across all test phan-

toms. Number of voxels ranges from 2527 to 23411.

Ensemble Noise Background Region dvk mc cnn

Phantom #1 Liver & Spleen 4.6% 6.1% 3.4%

Phantom #2 Liver 12.6% 13.3% 9.2%

Phantom #3 Liver 14.0% 14.6% 12.9%

Phantom #4 Liver 20.3% 19.6% 14.8%

Phantom #5 Spleen 7.1% 7.6% 5.8%

4.2.3.2 Patient Results

In patients, where there was no known ground-truth, results were instead compared visu-

ally. Fig. 4.14 and Fig. 4.15 show examples of dose-rate maps corresponding to high count

(day 1 post-therapy) and low-count (day 7 post-therapy) imaging conditions post-
177

Lu

dotatate. Although concrete conclusions could not be drawn, as there was no known

ground truth; visual inspections implied potential reduction of spect spatial resolution

effects on dose-rate accuracy by our DblurDoseNet. For instance, with the cnn, the en-

larged kidney map and line profiles of Fig. 4.14 show a larger decrease in dose-rate in the

medulla and renal pelvis areas, which could be due to the expected lower physiological

177
Lu uptake in this part of the kidney compared to the cortex region. In addition, in

Fig. 4.15, the lesion with a necrotic center demonstrated a larger drop in dose-rate at the

center with the cnn compared to dvk or mc, which could be due to the expected lower

uptake associated with necrosis. Moreover, to demonstrate the generalizability of our cnn

on patient data, we tested our cnn using 42 spect/ct scans of 12 patients and then com-

pared with dvk and mc dose-rate maps in terms of themean dose-rate and drvh statistics

(DR10, DR30, DR70 and DR90) across lesions and kidneys. As demonstrated in Table 4.5,

there was a strong agreement between cnn and mc for mean dose-rate in kidneys; and

for mean dose-rate in lesions, cnn showed higher values than mc, which could be par-

tially due to the compensation of spect resolution effects. For drvh statistics shown in
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Fig. 4.12, the cnn and mc results also agreed well in kidney; but for lesions, the cnn mea-

surement showed a lower dose-rate value in DR70 (DR90) and a higher dose-rate value

in DR30 (DR10), compared to mc and dvk. The drvhs in the lesions might be improved

because the blurring effects caused by the limited spect camera resolution would lead to

a higher DR70 (DR90) and a lower DR30 (DR10), but concrete conclusions could not be

made due to the absence of ground truth.

tbl 4.5 – Dose-rate values (mean dose-rate and drvh statistics) for dvk, mc and cnn

methods averaged across all 42 scans from 12 patients. Minimum and maximum values

are shown in parenthesis. The medians (ranges) for the voi volumes are: lesion: 15 mL

(2.3 mL – 582 mL); left kidney: 192 mL (105 mL – 275 mL); right kidney: 180 mL (122 mL –

259 mL). *: Reported dose-rates are normalized to 1 MBq in field-of-view.

Dose-rate*(nGy/MBq-sec)

dvk mc cnn

Lesion

Mean dose-rate 13.7 (0.2 – 87.9) 13.9 (0.3 – 88.9) 14.4 (0.3 – 88.8)

DR10 25.1 (0.4 - 177) 25.4 (0.4 - 179) 27.8 (0.5 - 188)

DR30 15.8 (0.3 – 122) 16.1 (0.3 – 123) 16.9 (0.3 – 127)

DR70 8.2 (0.2 – 48.1) 8.3 (0.3 – 48.5) 8.1 (0.3 – 48.8)

DR90 5.4 (0.1 – 17.1) 5.6 (0.1 – 19.3) 5.0 (0.1 – 22.9)

Left kidney

Mean dose-rate 3.7 (0.7 – 8.6) 3.8 (0.7 – 8.7) 3.8 (0.7 – 8.3)

DR10 6.0 (1.4 - 12.7) 6.1 (1.4 - 12.8) 5.8 (1.4 - 12.3)

DR30 4.6 (1.0 – 10.7) 4.7 (1.0 – 11.0) 4.6 (1.0 – 10.7)

DR70 2.7 (0.2 – 7.0) 2.7 (0.2 – 7.0) 2.8 (0.2 – 7.0)

DR90 1.6 (0.1 – 3.8) 1.7 (0.1 – 3.8) 1.6 (0.1 – 3.6)

Right kidney

Mean dose-rate 4.2 (0.7 – 9.1) 4.3 (0.8 – 9.2) 4.2 (0.8 – 9.1)

DR10 7.1 (1.5 - 17.2) 7.2 (1.6 - 17.2) 7.0 (1.8 - 15.2)

DR30 5.2 (1.0 – 11.8) 5.3 (1.1 – 11.8) 5.3 (1.1 – 12.2)

DR70 2.8 (0.2 – 7.3) 2.9 (0.2 – 7.3) 2.8 (0.2 – 7.7)

DR90 1.6 (0.1 – 4.4) 1.7 (0.1 – 4.5) 1.5 (0.1 – 4.0)

4.2.3.3 Comparing Performance with a Non-residual Network and a 2D

Network

To demonstrate the effectiveness of residual learning and the 3D convolutional feature

extractor that we implemented, we also compared our proposed cnn with a cnn that had

the same architecture but without residual learning (not adding the dvk dose-rate map

to the output of 2D U-Net); and to a cnn without 3D feature extractor (a purely 2D U-

Net where we treated the depth dimension of input as channels). The non-residual cnn

and the 2D cnn were trained using the same hyper-parameters and the same training

data as for the proposed cnn. All the testing used the same test phantoms demonstrated

in the previous section. As shown in Table 4.6, quantitative comparisons across all test

phantoms showed superior results of our proposed cnn (DblurDoseNet) for almost all
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vois except for some cases where all the networks show comparable results. Based on

these promising results, we believed the idea of residual learning was effective and it was

beneficial to include a few 3D convolutional layers to extract 3D information rather than

using only 2D convolutions.

tbl 4.6 – Mean (maximum) dose-rate error and nrmse comparison between cnn with

and without residual learning and with 2D and 3D networks evaluated across vois in all

test phantoms.

Mean Dose-rate Error NRMSE

3D w/ res (DblurDoseNet) 3D w/o res 2D w/ res 3D w/ res (DblurDoseNet) 3D w/o res 2D w/ res

Healthy liver 1.4% (2.3%) 5.5% (7.0%) 1.2% (3.1%) 19.6% (33.2%) 21.6% (35.1%) 23.2% (33.3%)

Lesion 5.3% (13.0%) 6.9% (12.5%) 6.0% (13.9%) 21.2% (32.5%) 21.4% (31.5%) 21.8% (38.0%)

Liver 1.9% (3.5%) 5.7% (7.6%) 1.9% (4.8%) 20.6% (26.3%) 21.6% (27.6%) 22.8% (26.6%)

Left kidney 0.9% (2.1%) 5.2% (6.5%) 1.8% (3.8%) 19.2% (22.9%) 20.1% (22.0%) 19.0% (20.8%)

Right kidney 1.8% (5.1%) 5.8% (12.6%) 2.6% (7.5%) 19.6% (21.5%) 20.5% (24.3%) 20.0% (23.6%)

Spleen 2.5% (6.2%) 6.3% (9.5%) 2.2% (6.4%) 13.1% (17.7%) 14.4% (19.9%) 13.2% (18.2%)

Lumbar Vertebra 11.1% (27.4%) 10.5% (27.2%) 12.1% (30.6%) 33.0% (51.4%) 32.9% (49.1%) 32.7% (50.2%)

4.2.3.4 Time Cost

We compared the computation times of the different methods for generating a dose-rate

map corresponding to the typical 512× 512× 130 patient spect/ct image size on CPU

(Intel Core i9 @2.3 GHz) or GPU (Tesla V100). dvk with density scaling took 20 seconds

on the CPU and 10 seconds on the GPU. dpm mc code took 60minutes simulating 1 billion

histories (for both ground truth and test phantoms/patients) on the CPU while running

dpm on a GPU is not an option at this time (we are unaware of any mc code for internal

therapy running on a GPU). The cnn took about 20 minutes on the CPU and about 20

seconds using the GPU. After considering the dvk pre-computation time for the residual

learning network, the total GPU time cost for the cnn with residual learning is about

20+10 seconds.

4.2.4 Discussion

Reliable voxel-level dosimetry requires reliable dose-rate images at multiple timepoints

as well as dependable co-registration and fitting of the dose-rate vs. time data estimated

at the voxel-level. Performing reliable voxel-level co-registration and fitting to generate

dose maps can be challenging, but the feasibility has been demonstrated [102, 208]. In

this work, we focused on generating reliable dose-rate maps. With evaluation both on

virtual patient phantoms that covered clinically relevant conditions and patients who un-

derwent
177

Lu dotatate therapy in our clinic, we demonstrated that our cnn using
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residual learning framework could provide fast and accurate dose-rate estimation. De-

spite using only moderate amount of training data, DburDoseNet provided consistently

superior performance over conventional voxel dosimetry in terms of resolution, accuracy

and noise across multiple regions including kidneys, lumbar vertebra and lesions in soft-

tissue and lung. Importantly, for clinical implementation, the cnn voxel dose-rate map for

a 512×512×130 patient image could be generated in∼30 seconds, which was a fraction

of the time associated with running mc, the current gold standard. Although generating

the ground-truth labels for training by mc was computationally expensive, this effort was

needed only once at training time, for a given spect imaging system.

The main limitation to accurate voxel-level patient specific dose-rate estimation with

non-learning-basedmethods is the poor spatial resolution associatedwith the input spect

(or pet) images. This issue was evident in our results where the theoretically accurate

mc-based calculation only slightly outperformed dvk with density scaling. In contrast,

by using the true activity map-based dose-rate estimates for training, our cnn has the

ability to “learn” the physics of dose deposition and to compensate for the spect resolu-

tion effects that both lead to blurring of the conventional (non-learning-based) dose-rate

maps, as demonstrated in the phantom results (Fig. 4.10, Fig. 4.11, Fig. 4.12, Fig. 4.13 and

Table 4.4). In patient studies, potential mitigation of spect resolution effects was demon-

strated empirically. In Fig. 4.14, the cnn-based estimates show sharper line profiles and

larger drops in dose-rate over the medulla area of the kidney, analogous to the illustration

of Fig. 4.7. In Fig. 4.15, the larger drop of dose-rate in the necrotic center of a tumor, may

reflect what is expected based on physiology. Although test results were promising over

42 scans originating from 12 patients, further testing is planned as more patient images

become available. We did not investigate training with more virtual patients, because sim-

ulating
177

Lu spect projections by full mc simulation was computationally expensive.

Furthermore, we found that our cnn, trained by 9 virtual patient phantoms, was able to

generate promising dose-rate estimates across a diverse range of test cases.We expect that

applying self/weakly-supervised training may address the computational inefficiency of

simulating
177

Lu spect projections in the future. In addition, due to the lack of ground

truth, we were unable to make concrete conclusions about the performance of our cnn

on test patient data. But the uncertainty of our cnn can be quantified by generating confi-

dence maps [135, 15, 267] using Bayesian networks [118], an ensemble of multiple networks

[131], or an extension of the probabilistic U-Net [128], which can be one direction to inves-

tigate in the future.

The mean dose-rate errors shown in Fig. 4.13, especially for lesions, were generally

lower than one would expect based on reported activity recovery in quantitative
177

Lu
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spect phantom studies. For example, for 72 osem updates, activity recovery of only 80%

was reported for a 26.5 mL volume “hot” sphere in a “warm” background region [236]. The

results of the current study showed lower errors because, unlike in a physical phantom,

the assigned “true” activity values at the boundary of the structures in our pet-based vir-

tual patients did not drop off sharply, and instead, were blurred out. Moreover, in Fig. 4.13,

all 3 methods showed the largest mean dose-rate error for lesions and lumbar vertebra,

as expected due to the relatively smaller sizes of these structures compared to other or-

gans, and hence partial volume effects associated with spect resolution were higher. The

large error for the lumbar region with dvk (∼25%) was likely to be due to the heteroge-

nous tissue within this region, which includes cortical bone, trabecula bone, yellow and

red marrow. Regarding dvk, the simple density scaling that was performed in our study

was potentially inadequate for this region. Furthermore, the
177

Lu uptake in a lumbar re-

gion was very low, so the cross-dose contribution to dose-rate there, including the photon

cross-dose, could be significant. Our 99×99×99 photon kernel may have been insufficient

to capture the full photon cross dose contribution to the lumbar vertebra. Our study did

not include standard partial volume correction using volume-dependent recovery coeffi-

cients (RCs) because such methods provide only a mean dose, not a voxel-level correction.

Furthermore, the limitations of standard RC methods due to dependence on object shape,

activity distribution and target-to-background ratios are well known. Voxel-level partial

volume correction is much more challenging [233] and their applications in spect are not

well established. Our results demonstrated that training using true dose-rate maps could

reduce the need for such corrections to compensate for resolution effects.

To define our virtual patient activity maps, we chose to use
68
Ga dotatate pet/ct to

exploit the availability of these images that had finer resolution than spect and showed

similar uptake patterns as
177

Lu dotatate. Despite the standard practice of using
68
Ga

pet or
177

Lu spect as a theranostic pair, some differences between the two distributions

were to be expected, but we did not expect this to impact our cnn performance because

the pet images were used only to define the virtual patient phantoms and not in the

training process itself, as proposed in another study [263]. Ideally, however, images of

higher resolution than clinical pet should be considered as the true representation of the

activity map of patients when generating the virtual patient training set, but usually they

are not readily available. To circumvent this issue, we also investigated using phantoms

with piece-wise uniform uptake in ct-defined organs/lesions for training (such as xcat

[209] in Fig. 4.7), but we found that such training led to unnaturally uniform dose-rate

maps when tested on patient images. We also fed our cnn with an all-zero activity map,
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as a sanity check to our proposed framework as well as implementation. The output dose-

rate map, as expected, was all zeros. This illustrates that if there is no apparent signal

in the reconstructed spect, then there will not be any unexpected nonzero values in

the dose-rate map. A possible alternative to our pet-based virtual patient activity maps

is to assign distributions based on high-resolution animal models, for instance, ex-vivo

autoradiography showing uptake distribution of dotatate in kidney [171].

Our results also demonstrate the advantage of residual learning framework exploiting

the fast dvk approach as an initial estimate, which was not utilized in the prior studies

[3, 138, 85, 84]. We also conjectured that incorporating residual learning could not only

improve performance on the test data, but also accelerate the training process. Other than

using a fast dvk approach for residual learning, an alternative was to generate a quick mc

(low number of histories) estimate, which was not explored here. Another advantage of

our network is that we first implemented a couple of depth feature extractor layers that

shrink the 3D input into 2D at the beginning of our network. Compared to fully 3D ap-

proaches, this approach leads to a network having fewer parameters (because 2D kernels

have fewer parameters than 3D kernels), so it is less likely to overfit the training data,

avoiding a common problem in deep learning applications for medical imaging, where

only moderate amount of training data is available. Another option that we did not inves-

tigate is to use 2.5D cnn architectures [280]. A potential drawback of our proposed cnn is

possible discontinuity of pixel values in coronal slices; however, we did not observe such

discontinuity, presumably due to the 11-slice sliding window.

We expect that training a single cnn, as we did in the current study, is simpler than

training 2 separate cnns to learn the dosimetry and spect resolution effects. Typically,

there will be 3 stages needed to train 2 separate cnns; stage 1: training cnn-A for spect

resolution; stage 2: training cnn-B for dosimetry; stage 3: jointly fine-tuning cnn-A and

cnn-B. Compared to our proposed end-to-end network (DblurDoseNet), which only in-

volves one training stage, such 3-stage of training will be more complex and potentially

inefficient. However, only through comprehensive comparisons can one draw definite

conclusions between these two approaches, which we expect to undertake in the future.

Although our study only investigated
177

Lu dosimetry, we expect that by changing the

training dataset and making minor modifications to the architecture, our cnn approach

can be extended to other radionuclides including
90
Y that is a pure-beta emitter and I-131

that has significant beta and gamma contributions to the dose-rate.
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4.2.5 Conclusion

We constructed and tested a residual cnn that was trained on virtual patient phantom

images to learn the mapping from spect/ct images to the corresponding dose-rate maps.

We took the novel approach of using a single cnn to learn not only the dose-rate esti-

mation but also to compensate for blurring of the dose-rate map due to poor spect res-

olution. Across multiple regions such as kidney, lumbar vertebra and lesions in both soft

tissue and lung, the proposed residual DburDoseNet was able to outperform conventional

voxel-level dosimetry methods, including the current “gold standard” mc, in terms of ac-

curacy, noise and speed. Patient specific voxel-level dose rate maps can be generated in

∼30 secs on GPU; hence the cnn approach has much promise for real-time clinical use

in radionuclide therapy dosimetry for treatment planning.

4.3 Efficient Super Resolution Network (ESR-Net) for

spect Image Reconstruction
5

4.3.1 Motivation

One limitation of previous deep learning methods for spect image reconstruction is that

they assume the training images have the same voxel size as the reconstructed images,

which can be suboptimal when training images having finer voxel sizes (or higher res-

olution) are available. In reality, objects (e.g., patients) being scanned are continuous-

space functions, whereas the reconstructed images are always digital and lie in a finite-

dimensional vector space. This type of model mismatch has rarely been considered in su-

pervised learning methods for image reconstruction problems, so such methods generally

involve some type of “inverse crime” in their formulation and evaluation [113]. Directly

applying conventional algorithms [45, 153, 170, 79, 80] to training and testing images with

finer voxel sizes is conceptually straightforward, but can be very slow due to the heavy

computations in forward and backward projections. We propose a novel method that can

enhance the resolution of the reconstruction by training the regularizer using images

having finer voxel sizes, while maintaining the computational efficiency by performing

forward and backward projections using coarser voxels that are more suitable for the col-

limator resolution. We call the proposed Efficient Super-Resolution network “ESR-Net”.

[144].

5
This section is based on [144].
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4.3.2 Methods

The key idea of ESR-Net is to let forward and backward projections work with coarse

voxel sizes whereas regularization works with finer voxel sizes. We formulate image re-

construction as the following optimization problem:

x̂ = argmin
x≥0

f(Tx) + βR(x), f(v) ≜ 1′ (Av + r̄)− y′ log(Av + r̄), (4.5)

where A denotes the spect system model, y denotes noisy measurements that are as-

sumed to follow independent Poisson distributions. r̄ denotes themean background events.

T denotes a 3D downsampling matrix, and x denotes a finely sampled image. This work

focuses on cnn-based regularizer R(x). Starting from (4.5), we use an unfolded set of up-

dates inspired by a block coordinate descent (BCD) algorithm [153], leading to the iteration

update of the form

uk+1 = rθ(xk), (4.6)

xk+1 = argmin
x≥0

f(Tx) +
β

2
∥x− uk+1∥22

≈ 1

2β

(√
h2(uk+1) + 4βxk ⊙ e(xk)− h(uk+1)

)
,

where rθ denotes a neural network with parameter θ, ⊙ denote element-wise multiplica-

tion. (This is an alternating update, but it is not actually a descent, and we use a small

number of outer iterations and do not focus on convergence in the limit as the number of

iterations increase.) Subscript k denotes the iteration number. h(·) and e(·) are

h(uk+1) ≜ T
′A′1− βuk+1,

e(xk) ≜ T
′A′ (y � (ATxk + r̄)) . (4.7)

In (4.6), we ran one iteration of regularized em algorithm to approximate the minimizer

w.r.t. tox, whenuk+1 is held fixed, per each outer iteration, hence the “≈” symbol. Fig. 4.16

shows the proposed ESR-Net architecture.

4.3.3 Results

We compared our proposed ESR-Net with the osem algorithm and BCD-Net [153]. Both

osem and BCD-Net work with 4.8mm3
voxel sizes (128× 128× 80 image size), whereas

ESR-Net works with 1.6mm3
voxels (and hence 384×384×240 image size), so we resized
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the reconstructed images of osem and BCD-Net into 1.6mm3
voxel size using trilinear

interpolation before comparison. We trained BCD-Net and ESR-Net with the same regu-

larization parameter β = 0.1 and the same cnn architecture; the only difference is that

the BCD-Net was trained using activity maps of size 128 × 128 × 80 that were down-

sampled from the original true activity maps. The regularized em algorithm for BCD-Net

and ESR-Net was implemented in Julia using the “SPECTrecon” package
6
. Fig. 4.17 shows

that the proposed ESR-Net visually improves the reconstruction of a necrotic tumor as

well as resolution of spleen over the osem and the BCD-Net significantly. For quantita-

tive comparison, we used mae and nrmse as evaluation metrics. Table 4.7 and Table 4.8

show that the proposed ESR-Net consistently had the lowest nrmse over all organs for

both xcat and virtual patient phantoms, compared to osem and BCD-Net. Results shown

in “Lesion
∗
” were averaged across all lesions.

tbl 4.7 – mae and nrmse of organs tested on xcat phantoms.

Organ/mae/nrmse(%) osem BCD-Net ESR-Net

Lesion
∗

14.8/37.4 17.4/36.1 9.6/31.4

Kidney 11.5/53.8 11.8/53.2 11.3/47.3

Liver 1.5/47.7 1.1/46.9 1.2/41.7

Spleen 3.4/42.2 3.7/41.3 3.4/31.8

Lung 9.3/53.3 9.2/53.4 4.6/44.6

tbl 4.8 – mae and nrmse of organs for virtual patient phantoms.

Organ/mae/nrmse(%) osem BCD-Net ESR-Net

Lesion
∗

6.6/24.8 5.9/22.9 5.0/22.8

Kidney 6.4/24.6 4.9/22.6 2.8/21.1

Liver 6.8/25.6 6.6/24.8 3.6/23.2

Spleen 10.6/22.8 8.7/19.6 4.6/16.6

4.3.4 Conclusion and Future Work

We plan to extend the current phantom dataset to cover more realistic virtual patients, but

one challenge is that these virtual patients images suffer from spect resolution effects

6
Available at https://github.com/JuliaImageRecon/SPECTrecon.jl.
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and hence are blurry. As the ESR-Net uses high-resolution images for training, we plan

to deblur the osem reconstructed images using a modern sota blind image deblurring

algorithm [250]. The original algorithm is implemented only for 2D images, and we plan

to implement the 3D version and then compare with the original 2D version (deblur slice

by slice). Then we plan to generalize the “ESR-Net” to other radionuclides. We also will

think about how to adapt this work to reduce the “inverse crime” aspect of supervised

learning methods for image reconstruction.

4.4 Shorter spect Scans Using Self-supervised

Coordinate Learning to Synthesize Skipped

Projection Views

4.4.1 Motivation

spect imaging has had many advances [197]; however, one continuing limitation is that

spect acquisition is slow, especially under the low-count conditions encountered when

imaging therapy radionuclides, such as
90
Y and

177
Lu. These radionuclides are chosen for

the therapeutic properties of their alpha and beta emissions, hence do not have ideal prop-

erties for gamma-camera imaging. For example, the photon/gamma-ray yield is relatively

low, leading to low count conditions. Nevertheless, it is very desirable to perform both

therapy and imaging with the same radionuclide, even in very low-count applications.

With
177

Lu where the 208 keV gamma-ray intensity is only 10%, it can take 15-30

mins per bed ( 40 cm axial) for spect on standard gamma-camera systems following ra-

diopharmaceutical therapies (rpts) such as
177

Lu-dotatate and
177

Lu-psma [205, 206].

For rpts involving alpha-emitters, such as Ac-225-psma, acquisition times of up to 1 hour

have been proposed [59]. This is because both the administered activities and the gamma-

ray yields are very low. spect under low-count conditions is particularly challenging

when multiple beds are needed to encompass metastases and critical organs throughout

the body. For example, in psma therapy for metastatic castration-resistant prostate cancer

(mcrpc), spect imaging may require 3-5 bed positions to include all critical organs such

as lacrimal glands, salivary gland, bone marrow, and kidneys, as well as lesions that can be

throughout the body [112, 242]. Such a procedure demands a significantly greater amount

of camera time, which can not only lead to patient discomfort, but can also increase mo-

tion artifacts. Additionally, in many facilities, camera availability is limited [242, 207, 167,

58, 41].
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To overcome these challenges, a shorter acquisition time is preferrable by taking ei-

ther fewer projection views or shorter acquisition time per view. These strategies pose

additional challenges due to either the missing (skipped) view angles or the increased im-

age noise [157]. Numerous algorithms have been proposed with a focus on denoising the

reconstructed images from noisy projections to improve image quality [223, 1, 154, 183,

228, 229, 268]. In contrast, the approach of synthesizing the missing projections [202] has

been relatively unexplored. Most prior studies have employed deep learning techniques

to learn the relationship between one projection and its neighboring views, often relying

on ground truth data for training purposes. For instance, Rydén et al. [202] used a deep

convolutional U-Net trained to generate synthetic intermediate projections. Meanwhile,

Li et al. [142] introduced a network architecture called LU-Net that integrates Long Short-

TermMemory network [95] and U-Net to understand the transformation from sparse-view

projection data to full-view data. Chen and Zhou [38] presented a cross-domain method

using spect images predicted in the image domain as reference for synthesizing full-view

projections in the sinogram domain. These approaches are reported to be effective, but

they are all based on supervised learning methods that require a sufficient amount of

paired data for training. However, in many cases, obtaining enough paired ground truth

data for training is challenging or even infeasible. This difficulty is especially true in the

case of post-therapy imaging for verifying uptake or dosimetry following rpts because

such imaging is typically not part of routine clinical practice. On the other hand, self-

supervised learning, which does not require separate training labels and instead learns

from each scan itself, has the potential to overcome the limitations of supervised learning

in such scenarios.

The aim of this research was to reduce spect acquisition time by reducing the re-

quired number of measured projection views while maintaining image quality by incor-

porating synthetic projections generated by deep neural networks. We implemented a

multi-layer perceptron (mlp) and trained it to generate skipped spect projection views

through self-supervised coordinate learning [231]. We evaluated the performance of the

proposed method both qualitatively and quantitatively in phantom studies and in patients

imaged after
177

Lu dotatate therapy and
177

Lu psma therapy.

4.4.2 Materials and Methods

4.4.2.1 Phantom Study

We used an elliptical phantom with six hot sphere inserts of volumes 2,4,8,16,30,114mL.

These “hot” spheres (having the same
177

Lu activity concentration of 0.22 MBq/mL) are
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placed in a “warm” background (0.035 MBq/mL) to achieve a sphere-to-background ratio

of 6.3:1. The sphere volumes of interest (vois), corresponding to the physical size, were

defined on the ct images.

4.4.2.2 Patient Studies

For the patient studies, we used spect/ct scan data from 11 patients imaged after
177

Lu-

dotatate therapy for neuroendocrine tumor and from 6 patients imaged after
177

Lu-

psma-617 therapy for mcrpc with the approval of University of Michigan Institutional

Review Board (IRB) for retrospective analysis. We defined organs of interest (kidneys

for dotatate therapy, and kidneys, lacrimal glands, parotid glands, and submandibu-

lar glands for psma therapy) using deep learning-based methods available within MIM

Software. A radiologist manually defined the lesions (78 in total, volume ranging from 2

to 250 mL) as described previously [61].

4.4.2.3 spect/ct Acquisition

All scans were acquired on a Siemens Intevo Bold spect/ct with a 5/8" crystal equipped

with medium-energy collimators. Acquisition parameters included 120 views, with 60

views per head, a 20% photopeak window centered at 208 keV, and two adjacent scat-

ter windows of 10% width each. The phantom study used a prolonged acquisition of 196

sec/view to achieve count levels similar to that encountered in patient imaging after
177

Lu

therapy. The patient images were acquired under the standard protocols used in our clinic.

177
Lu-dotatate spect images were acquired for a single bed position at day 2 or day 4

after the cycle 1 administration of 7.4 GBq using an acquisition time of 25 seconds per

view (total scan time of 25 min). The
177

Lu-psma spect images were acquired with two

bed positions at day 2 or day 3 after the cycle 1 administration of 7.4 GBq with an acqui-

sition time of about 17 seconds per view per bed (total scan time of about 34 min). The

projection view matrix size was 128×128, with a pixel size of 4.8×4.8mm. The ct images

were acquired in low-dose mode (120 kVp; 15 – 80 mAs) under free breathing conditions,

with a matrix size of 512×512 and pixel size of 0.98×0.98mm.

4.4.2.4 Self-supervised Coordinate Learning

Given the limited amount of data, we focused on a self-supervised learning approach,

rather than supervised methods for this study. Our method draws inspiration from com-

puter vision: the neural radiance field (nerf) approach that models complex 3D scenes

through a volumetric scene function [174]. nerf fundamentally uses neural networks to
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map 3D spatial coordinates to radiance values. In a similar vein, we developed a mlp, com-

prising 12 hidden layers with 256 neurons each, to synthesize missing projection views in

spect imaging. Fig. 4.18 illustrates the input to our mlp: 5-dimensional coordinates for

each pixel in spect projection views. These coordinates consist of pixel position (i, j),

the sine and cosine of the view angle and radial position (to accommodate noncircular or-

bits). To enhance the representation of the continuous measurement field, we upscaled the

original projection images by a factor of two with the nearest-neighbor resizing method.

Consequently, the network input size for each projection view becomes (256×256)×5. The
training target consists of measured counts, with a size of 256×256×1 for each view. Dur-

ing inference, the model is fed the coordinates of the missing spect projections and pre-

dicts the corresponding counts both for the main acquisition window and adjacent scatter

windows. Our method provides flexible adaption to different numbers of projection views,

corresponding to various down-sampling factors (df). For instance, when trained on 30

measured views and synthesizing 90 views, it achieves a 75% reduction in scan time (df=4).

Additionally, in this study, we also tested our method for df=2 and df=8 cases.

4.4.2.5 Training and Optimization

For each scan, we optimized the mlpweights by minimizing the Huber loss function (δ=1),

which is given as

Lδ(a) =

 1
2
a2, if|a| < δ

δ
(
|a| − 1

2
δ
)
, otherwise

. (4.8)

We employed the ADAM optimizer [123] with an initial learning rate set at 0.001 and a

reduce-on-plateau scheduler to minimize the loss function. We used coordinates corre-

sponding to 20% of all pixels from the full projection views as per-patient validation data.

The patient-specific model was selected at the lowest validation loss out of 200 training

epochs. We used a batch size of 10,000 out of 256 × 256 × nbed × nview projection pixel

coordinates.

4.4.2.6 spect Reconstruction

In this study we performed osem spect reconstructions (dotatate data matrix size:

128×128×79 and 2-bed psma data matrix size: 128×128×158, both with voxel size in mm:

4.8×4.8×4.8) with 6 subsets and 16 iterations using in-house software (available at: https:
//github.com/JeffFessler/mirt). No post-processing filter was applied. Scatter cor-

rection used a triple energy window method, while the depth-dependent attenuation cor-

rection used the standard ct-to-density calibration curve. The point spread function for
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depth-dependent collimator-detector response modeling was simulated with mc [156] us-

ing a point source in air and fitted with Gaussian curves.

4.4.2.7 Evaluation

spect image quality was evaluated for four distinct reconstruction methods: 1) Full recon-

struction using all 120 measured projections (full recon). 2) Partial reconstruction using a

certain df of the measured projections (partial recon). 3) Linear interpolation reconstruc-

tion, where a certain df of projectionsweremeasured, and the remaining projectionswere

generated through linear interpolation (LinInt recon). 4) nerf reconstruction, where a cer-

tain df of projections were measured, and the remaining were mlp-predicted synthetic

projections (nerf recon).

We quantified reconstruction performance using multiple evaluation metrics, includ-

ing nrmsd, ar, arnr, cnr and rcnr. In the phantom study, the uniform “warm” region

served as the background (BKG). For the clinical patient study, we selected a homoge-

neous region within the lung as the BKG. The noise level was calculated as the standard

deviation of voxel counts within this BKG, denoted as STDBKG. These evaluations pro-

vide an assessment of the synthesized projection and reconstructed image compared to a

reference image: the true activity map for phantom data and the osem reconstruction us-

ing all 120 measured projections (i.e., full recon) for patient data. Definitions of the above

metrics are given as follows:

AR =
mean counts of reconstruction within voi

mean counts of true activity within voi

, ARNR =
AR

STDBKG

,

CNR =
mean of voi −mean of BKG

STDBKG

, RCNR =
CNRsparse view recon

CNRfull recon

× 100%.

4.4.3 Results

4.4.3.1 Synthesized Projections

Table 4.9 compares the performance of linearly interpolated projections against nerf-

synthesized projections, summarizing the nrmsd values across various dfs for phantom

studies and patient studies. The results consistently demonstrate that the nerf-synthesized

projections outperform linearly interpolated projections, exhibiting lower nrmsd values

in both phantom and patient studies.
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Phantoms dotatate Patients psma Patients

nerf Linear nerf Linear nerf Linear

df=2 5.9% 9.0% 16.9% 23.4% 17.5% 24.6%

df=4 6.2% 9.5% 17.5% 25.5% 18.4% 27.4%

df=8 7.5% 11.1% 18.8% 30.4% 23.7% 34.1%

tbl 4.9 – nrmsd (relative to measured projections) comparisons between nerf-

synthesized projections and linearly interpolated projections across different DFs for

phantom studies and patient studies (average across 11 dotatate studies and 6 psma

studies).

Visually, nerf-synthesized projections appear smoother than their measured counter-

parts. Fig. 4.19 displays the measured (Fig. 4.19 (a)) and synthesized projections for a rep-

resentative psma patient. Close examination of the intensity profiles across the lacrimals

reveals notable differences: the nerf-synthesized projection exhibits two peaks (corre-

sponding to high uptake in left and right lacrimals as expected with psma), more closely

aligning with the pattern observed in the measured projection, while the linearly interpo-

lated projection presents four peaks due to angular interpolation.

tbl 4.10 – Comparing synthesized projections using linear interpolation, supervised

learning [202] and our proposed method. Results were based on 9 patient scans.

Method Linear Interpolation U-Net [202] Ours

nrmse (%) 14.0±3.0 17.3±1.9 11.1±2.3

4.4.3.2 Phantom Reconstruction Results

Consider the df=4 scenario as an illustrative case. Fig. 4.20 compares four reconstruc-

tions with the true activity map. Although each reconstruction method exhibits structural

similarities with the true activity, the partial recon is noticeably noisier than its counter-

parts. Quantitative comparisons, presented in Fig. 4.21, plot ar to noise curves for various

spheres at df=2,4 and 8. Clearly, the nerf recon outperforms both the partial recon and

LinInt recon, delivering results that most closely parallel the full recon through various

numbers of iterations of the osem algorithm. Note that even for the full reconstruction,

ar is degraded (ar < 1) because of partial volume effects [198].

Moreover, the noise level in all sparse-view reconstructions increases as the df be-

comes larger. But the nerf reconstruction consistently achieved highest activity recover-

ies for all six lesions at the same noise level. At df=8, detailed in Fig. 4.21 (c), the partial
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reconstruction attained higher activity recovery for small lesions, at the expense of sub-

stantially increased noise level, while the nerf reconstruction remains superior for larger

lesions. For all sizes of lesions and DFs, the nerf recon matched the activity recovery of

the LinInt recon while maintaining a significantly lower noise level.

4.4.3.3 Patient Reconstruction Results

Fig. 4.22 and Fig. 4.23 show the coronal Maximum Intensity Projections (MIPs) of an ex-

ample patient image following dotatate and psma therapy, respectively, derived from

four different reconstruction methods at various dfs. In both studies, the LinInt recons

exhibit noticeable artifacts due to angular interpolation, more pronounced at higher dfs.

This effect is particularly evident in the psma study for organs like the lacrimal, parotid,

and submandibular glands at df=4 and 8, substantially affecting the structural clarity of

the spect images. Conversely, partial recons became noisier with increasing dfs, making

it challenging to discern small hot spots from the background. However, the nerf recons

retained a more accurate representation of activity distribution, closely resembling the

full reconstructions, while maintaining a balanced noise level.

Quantitatively, the nerf recon yielded the highest average rcnr in the dotatate

study, as shown in Table 4.11, for both lesion and kidney vois across all dfs. Similarly, in

the psma study, the nerf reconstruction had higher average rcnr for all vois, as shown

in Table 4.12, across all dfs. The limitation of LinInt recon is particularly evident in the

lacrimal glands, which are of very small volume (about 0.4 mL) and exhibit exceptionally

low rcnr values.

df=2 df=4 df=8

nerf

Recon

LinInt

Recon

Partial

Recon

nerf

Recon

LinInt

Recon

Partial

Recon

nerf

Recon

LinInt

Recon

Partial

Recon

Lesion 88.6% 82.5% 82.7% 87.9% 68.7% 68.7% 73.5% 43.9% 48.2%

Kidney 92.6% 85.8% 84.5% 88.0% 73.1% 67.0% 76.5% 51.3% 48.8%

tbl 4.11 – Average rcnr values of the nerf recon, the LinInt recon, and the partial recon

across all eleven dotatate patient studies, benchmarked against the full recon, whose

rcnr is standardized at 100%.

4.4.4 Discussion

The field of machine learning, particularly in the domain of dl, is rapidly growing. Com-

pared to other medical imaging modalities, dl applications to spect imaging are limited,
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df=2 df=4 df=8

nerf

Recon

LinInt

Recon

Partial

Recon

nerf

Recon

LinInt

Recon

Partial

Recon

nerf

Recon

LinInt

Recon

Partial

Recon

Lesion 83.8% 79.8% 80.7% 78.4% 70.7% 68.5% 65.7% 55.7% 54.9%

All Organ ROIs 84.7% 75.7% 80.9% 78.4% 56.9% 67.3% 63.2% 31.0% 50.8%

Kidney 84.8% 79.9% 80.3% 80.1% 69.6% 67.6% 65.8% 44.2% 51.3%

Lacrimal 83.6% 63.6% 80.4% 77.5% 29.9% 68.6% 57.2% 10.2% 47.9%

Parotid 84.5% 79.3% 80.9% 79.1% 63.4% 66.0% 67.6% 34.7% 52.0%

Submandibular 85.6% 79.7% 81.8% 77.1% 64.0% 66.9% 62.2% 34.6% 51.7%

tbl 4.12 – Average rcnr values of the nerf recon, the LinInt recon, and the partial recon

across all six psma patient studies, benchmarked against the full recon, whose rcnr is

standardized at 100%.

perhaps due to the challenges of low-count scenarios of gamma-camera imaging. Previous

works have demonstrated the effectiveness of using dl to generate missing spect projec-

tions views with convolutional neural networks, particularly, U-Net [201]. However, the

data-intensive nature of supervised dl makes it less feasible for spect imaging, where

datasets are usually limited, e.g., for our study, only tens of patient data are available, and

it would be difficult to obtain hundreds or thousands of patient datasets for applying su-

pervised learning methods. Furthermore, the change of camera-specific parameters, for

example, the crystal thickness of gamma-cameras and body contour orbits, may also in-

fluence the performance of supervised learning approaches. Unlike supervised learning,

self-supervised learning methods derive insights directly from the current image itself

without the need for labeled datasets, making them inherently adaptable and robust to

variations in testing conditions. Thus, this thesis focused on a self-supervised learning

method.

With evaluation both on phantoms that covered clinically relevant conditions and pa-

tients who underwent
177

Lu dotatate and psma therapy in our clinic, we have demon-

strated that our nerf recon, based on self-supervised coordinate-based learning, effec-

tively compensates for image quality degradation under scenarios of sparse view acquisi-

tion. Considering both the reduction in acquisition time and quantitative accuracy/noise, a

df=4, appears to be a good compromise. In the patient studies, at a df of 4, the nerf recon

achieved cnrs of about 80% and higher for all organs and lesions while the other sparse

view methods achieved only about 60 to 70% relative to the full reconstruction (Table 4.12,

Table 4.11). Despite these promising outcomes, we observed reduced activity recovery in

the nerf recon for smaller spheres (<=4 mL) in the phantom reconstruction at higher

dfs, compared to the other three reconstructions (Fig. 4.21). This limitation could arise

from the neural network’s tendency to smooth over areas in low-count spect images due
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to high noise levels, leading to averaged voxel values from high noise variances. Despite

the minor loss in recovery (also observed in the LinInt recons), the nerf recons show

clearly improved cnr compared with the partial recons. Additionally, at a high df of 8,

the mlp faced challenge in accurately learning the representation of the continuous mea-

surement field due to a substantial reduction in training data, particularly impacting finer

textures that fluctuate in themeasurement projections [231], contributing to reduced activ-

ity recovery in small lesions. Future research could explore the integration of variational

inference or generative models to diversify the sampling process, potentially mitigating

this smoothing effect and enhancing the model’s fidelity in capturing fine details.

In a previous study investigating dl to synthesize missing projection, mc-based re-

construction was used [202]. Although the attenuation, scatter, and collimator-detector

response can be included simultaneously and accurately in the mc-based forward projec-

tion, this requires the simulation of a large number of photon histories, which is compu-

tationally expensive and therefore is less practical for routine clinical application. Instead,

we used a reconstruction protocol similar to what is used in the clinic: a publicly available

linear forward-backward systemmodel with triple energy window scatter correction [54],

which is a widely accepted and practical approach for
177

Lu spect reconstruction.

The idea of nerf was to render photorealistic novel views of scenes with complicated

geometries and appearances by representing a scene as a continuous function that out-

puts the radiance emitted in the coordinate space. To learn the continuous representation,

a mlp is trained by inputting the coordinate of the scene and the training targets are the

three-channel RGB colors. In this work, we conducted a similar training process where

the targets were defined as single-channel spect projection counts. Moreover, the nature

of coordinate-based learning works on the projection domain and hence is not restricted

to a specific image reconstruction method but is compatible with many methods includ-

ing those based on mbir or other methods such as plug-and-play (36) approaches. mbir

methods often handle a complete set of projection views but with fewer counts per view.

Such methods can improve image quality and reduce noise by incorporating appropriate

regularizers and priors; however, choosing the optimal regularizers and regularization pa-

rameters remains a challenge. In contrast, our method is tuning-free, as evident from the

good performance in two different therapies where the activity distribution in the body

is substantially different.

Although our research was initially focused on
177

Lu spect imaging, we expect that

our coordinates learning-based self-supervised method could be adapted for use in other

low-count applications. This includes pure β−
-emitters, like

90
Y, characterized by a low

yield of bremsstrahlung photons for spect imaging [176], and α-emitters, like Ac-225 that
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have low gamma-ray yields [59]. Both present inherent low-count imaging challenges that

could potentially benefit from our approach. Furthermore, our method, which allows for

skipping projection views could benefit diagnostic spect imaging by enabling adminis-

tration of lower activities, therefore supporting low-dose spect protocols that reduce

radiation exposure to patients with minimal compromise to image quality.

4.4.5 Conclusion

This study addresses the challenge of extended spect imaging durations under low-count

conditions, as encountered in
177

Lu spect imaging, by developing a self-supervised coor-

dinate learning approach that efficiently synthesizes skipped spect projection viewswith-

out separate training data. The proposed method enables a significant reduction in spect

acquisition time by allowing for skipping projection views and using a mlp to synthesize

skipped projections, while preserving image quality, as indicated by improved nrmsd in

projections, and arnr and rcnr in reconstructions compared with other methods for

sparse acquisitions. Unlike deep learning-based approach, this self-supervised method ad-

dresses the challenge of limited training data availability commonly encountered in clin-

ical settings. The feasibility for reduction in acquisition time demonstrated in this work

is particularly relevant for imaging under low-count conditions and for protocols that

require multiple-bed positions.
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fig 4.5 – Qualitative comparison of different training methods and osem tested on
90
Y

vp phantoms. Subfigure (a)-(f) and (g)-(l) show two slices from two testing phantoms.

Subfigure (m) and (n) correspond to line profiles in (a) and (g), respectively.
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fig 4.6 – Visualization of intermediate iteration results of different training methods. Sub-

figure (d)-(f): sequential training; (g)-(i): gradient truncation; (j)-(l): end-to-end training.
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fig 4.7 – Illustration of blurring of dose-rate maps due to the limited resolution of the

spect-based input activity map and the potential for a learning-based method to outper-

form mc, the current gold-standard. The cnn* used in this illustration was trained and

tested on different xcat phantoms [209].

fig 4.8 – Overview of phantom data generation for training/testing and the network

training process.
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fig 4.9 – The architecture of our DblurDoseNet.

fig 4.10 – One slice of the test virtual patient phantom #2. The top two branches show

the true activity map defined based on
68
Ga pet, spect and ct images, the ground truth

dose-rate map and the dose-rate images from the different methods (dvk, mc, cnn). The

bottom branch shows line profiles across the kidney and the residual map (the difference

between cnn and dvk dose-rate map). The dose-rate units were normalized to 1 MBq in

the field-of-view in all figures.

101



fig 4.11 – One slice of the test virtual patient phantom #5. The top two branches show

the true activity map defined based on
68
Ga pet, spect and ct images, the ground truth

dose-rate map and the dose-rate images from the different methods (dvk, mc, cnn). The

bottom branch shows line profiles across the kidney and the residual map (the difference

between the cnn and dvk dose-rate maps).
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fig 4.12 – Tumor & kidney differential and cumulative dose-rate volume histograms cor-

responding to dvk, mc, cnn and the ground-truth dose-rate maps of virtual patient phan-

toms. The sizes of tumor 1 and tumor 2 are 4mL and 65 mL, respectively.
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fig 4.13 – Mean dose-rate error, nrmse and error in drvh statistics (DR10, DR30, DR70,

DR90) comparison of dvk, mc and cnn relative to ground-truth dose-rate map across all

test phantoms.Median (range) voi volumes are: healthy liver (liverminus lesions): 1607mL

(1164mL – 2262mL); lesion: 16mL (4mL – 181mL); Left kidney: 177mL (98mL – 211mL); Right

kidney: 156mL (76mL – 249mL); Spleen: 191mL (131mL – 467mL); Lumbar vertebra L2 to

L5: 54mL (34mL – 68mL).
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fig 4.14 – One slice across kidney of the input images (spect, ct) and output dvk, ct,

cnn dose-rate maps and line profiles for a patient imaged after
177

Lu dotatate (at day

1 post-therapy). The residual map is the difference between cnn and dvk dose-rate map.
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fig 4.15 – One slice across lesion of the input images (spect, ct) and output dvk, mc,

cnn dose-rate maps and line profiles for a patient imaged after
177

Lu dotatate (at day

7 post-therapy). The residual map is the difference between cnn and dvk dose-rate map.

Finer level regularization

Coarser level reconstruction

Deep neural network

𝒙! 𝒖!

Regularized EM 
update 𝑻𝒙!

𝑨, 𝑻, 𝒚, '𝒓

𝑘 = 𝑘 + 1

+

fig 4.16 – Architecture of proposed ESR-Net.
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fig 4.17 – Qualitative comparison of different methods on test xcat phantom.
†

denotes after interpolation (image size 128×128×80→384×384×240 with voxel size

4.8mm
3 →1.6mm

3
). Subfigure (f) shows the line profile over a necrotic tumor.

fig 4.18 –Workflow of the proposed spect projection synthesis method. The training pro-

cess (top) involves inputting 5-dimensional coordinates into the mlp, with a user-defined

loss function guiding the network to learn from the patient-specific training targets: mea-

sured counts in sparse views. During testing (bottom), the trained network receives the

coordinates of missing views and outputs the predicted counts.
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fig 4.19 – Comparison of measured and synthesized projections for a patient following

177
Lu-psma therapy. (a), (b), and (c) show measured projection, linearly interpolated pro-

jection, and nerf-synthesized projection, respectively. The images and profile compari-

son across lacrimal glands show two hot spots/peaks in the nerf synthesized projection

(green line) corresponding to left and right lacrimals, closely resembling the profile of the

measured projection (red line), whereas the corresponding results for the linear interpo-

lation shows 4 peaks due to distortions.

fig 4.20 – Visual comparison of (a) phantom true activity, (b) full recon, and (c) nerf

recon, (d) LinInt recon, (e) partial recon for df=4. All images are in the same color scale.

fig 4.21 – ar to noise curves for sphere volumes ranging from 2 to 114mL for the full recon

and across DFs of 2, 4, and 8 (a to c). Distinct markers are consistently used to represent

each sphere volume across all subfigures. The comparison illustrates the variations in ar

and noise levels across four reconstruction methods: full recon, nerf recon, LinInt recon,

and partial recon, for different sphere sizes.
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fig 4.22 – Coronal MIPs of spect reconstructions corresponding to a dotatate patient

study using four reconstruction methods (columns) and three dfs (rows). Images are dis-

played with gamma correction with enhanced contrast levels to emphasize the blurring

artifacts present in the LinInt recon and the noise present in the partial recon, especially

visible at higher dfs.
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fig 4.23 – Coronal MIPs of spect reconstructions corresponding to a psma patient study

using four reconstruction methods (columns) and three dfs (rows). Images are displayed

with gamma correction with enhanced contrast levels to emphasize the blurring artifacts

present in the LinInt recon and the noise present in the partial recon, especially visible at

higher dfs.
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CHAPTER 5

Discussion and Future Works

Poisson inverse problems are an intriguing and flexible category of mathematical and com-

putational difficulties that have a wide range of applications in science and engineering.

These problems revolve around the task of reconstructing unknown parameters or func-

tions based on measured data that adhere to Poisson mle. The allure of Poisson inverse

problems lies in their capacity to reveal concealed information from noisy or incomplete

observations, thus making them immensely valuable in various fields including medical

imaging, environmental science, materials characterization, and astrophysics. This thesis

focuses on two specific applications of Poisson inverse problems, namely phase retrieval

and spect imaging. Thus far, we have presented several effective algorithms for resolving

these types of Poisson inverse problems. This chapter discusses the challenges associated

with these applications and explores potential future directions that can be investigated

based on the research findings presented in this PhD thesis thus far.

5.1 Learning on “SmArge” data

A significant portion of my research focuses on the challenges associated with working

with large 3D data when limited training data is available. Thus, the name “SmArge” orig-

inated from a combination of the words “small” and “large”, representing the concept of

working with a limited amount of data in extensive size. This section puts forth several

ideas for training machine learning algorithms on such “SmArge” data.

5.1.1 Transfer Learning

Transfer learning is a technique that enables the application of knowledge gained fromone

problem domain to another related domain [251]. It involves leveraging pre-trainedmodels

or learned representations and adapting them to new tasks, which can significantly reduce

the need for large amounts of labeled data in the target task. By using transfer learning
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as illustrated in Fig. 5.1, we can make more efficient use of pretrained large foundation

models and achieve high performance in various domains.

fig 5.1 – Illustration of transfer learning on medical images. Figure adopted from https:
//theaisummer.com/medical-imaging-transfer-learning/ .

For example, one can use finetuned Segment Anything Model (sam) [126] for spect

tumor segmentation. The sam is a promptable method that allows user to either draw a

bounding box or a point inside the object to be segmented and hence allow transfer learn-

ing to new image segmentation tasks. sam was pretrained on over 1 billion masks of 11

million images, and was reported to have often competitive with or even superior perfor-

mance compared to prior methods. Fig. 5.2 demonstrates the architecture of foundation

model for segmentation (sam). It has three inter-connected components: a promptable

segmentation task, a segmentation model (sam), and a data engine for collecting dataset

of over 1 billion masks.

fig 5.2 – The architecture of sam. Figure is adopted from [126].

We did a preliminary test of finetuned sam for tumor segmentation on spect images,

and it achieved promising results. Fig. 5.3 shows that the finetuned sam outperformed

the supervised U-Net approach, as well as the thresholding approach (the bottom row of
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Fig. 5.3), which is an empirical method that selects pixels that is larger than the threshold

in a user-specified region.

True Mask U-Net SAM

Threshold max=60% Threshold max=40% Threshold max=20%

fig 5.3 – Comparison of different tumor segmentation methods on spect images.

However, a challenge in transfer learning is that the majority of pre-trained founda-

tional models are designed to work with 2D data, while medical images predominantly

consist of 3D data [37]. Therefore, one potential future work is to investigate and develop

transfer learning techniques specifically designed for 3D medical imaging data. If such

models are not readily available, one can adapt existing 2D transfer learning techniques

to work with 3D medical data in a slice by slice fashion.

5.1.2 Unsupervised Learning

Unsupervised learning is another option for dealing with limited 3D training data [194]. It

involves training models on unlabeled data, allowing them to uncover patterns and struc-

tures without the need for explicit supervision signals. This approach has gained attention

due to its potential usefulness in scenarios where labeled data is scarce or expensive to ob-

tain. Several techniques have been developed in unsupervised learning, such as clustering

algorithms and autoencoders, which aim to discover hidden relationships within the data.

These methods have yielded promising results across various domains including natural

language processing, computer vision, and anomaly detection.
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For spect imaging, one can apply unsupervised learning to scatter correction (illus-

trated in Fig. 5.4) by running short time mc simulation for a rough estimation for the

scatters, and then apply unsupervised denoising approaches such as noise2noise [140],

noise2self [14], etc. One can also use unsupervised learning in spect image reconstruc-

Short-time 
MC

Estimated 
activity OSEM

Noisy 
scatters

Noise2Self 
denoiser

Denoised 
scatters

fig 5.4 – Illustration of using unsupervised denoising methods for scatter correction.

tion algorithms as shown in Fig. 5.5. This involves dividing projection views into separate

subsets and employing self-consistency loss between each subset during the training of

a neural network model [264]. Unsupervised learning can also be used in spect image

fig 5.5 – Illustration of using zero-shot unsupervised learning for mri image reconstruc-

tion. For spect reconstruction, one can replace mri k-space acquisitions by spect acqui-

sitions. Figure adopted from [264].

segmentation by employing unsupervised domain adaptation as shown in Fig. 5.6. This ap-

proach involves initially training a neural networkwith labeled data from a source domain,

and then fine-tuning the pretrained network on unlabeled data from the target domain

through self-learning. Self-learning can be achieved by minimizing the consistency loss

between different realizations of probabilistic models or incorporating a segmentation
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head for early features and using the final predictions of the network as pseudo-labels to

further refine the model [215, 258].

fig 5.6 – Unsupervised method for image segmentation. Self-learning can be done by

having self-consistency loss between the early segmenter and the final segmenter. Figure

adopted from [215].

5.1.3 Patch-based Models

Patch-basedmachine learningmodels have gained significant attention in recent years [22,

247]. This approach is particularly useful in medical imaging where high-quality labeled

datasets are often limited. The patch-based models use small image patches as the input

for training and inference processes, enabling them to capture local spatial information

efficiently. By extracting features from these localized patches, patch-based models can

effectively classify or segment medical images, even with a small amount of annotated

data available. One drawback of the patch-based method is its inability to capture global

information from the image. Therefore, a potentially more effective approach would be to

use a patch pyramid (as illustrated in Fig. 5.7), where patches are extracted at each level

of the pyramid. The concept of patch pyramid can be applied to score-matching diffusion

models, where the score function of the entire image can be expressed as a composite

of the score functions of image patches at various scales. By learning and incorporating

the score functions from these patch pyramids, the model can capture both local and

global information, resulting in more accurate score-matching and potentially leading to

improved performance on various medical imaging tasks.
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Global Features

Fine Details

fig 5.7 – Patch Pyramid for extracting image features at different scales. Adap-

tive/selective sampling can be applied to choose patches with richer information for train-

ing.

5.1.4 Learning 3D representation with 2D cnn

Another idea to train machine learning models on 3D data is to utilize 2D cnns for rep-

resenting 3D features. This is motivated by the fact that 2D cnns have fewer parameters,

reducing the risk of overfitting when training with limited data. An example that demon-

strates this concept is the “Swap-Net” model, which alternates between swapping the

spatial dimension and the channel dimension at different layers, allowing for 2D convo-

lutions to be applied at every two-dimensional coordinate (e.g., xy, xz, yz) within the

three-dimensional data as illustrated in Fig. 5.8.

64x64x64

Swap block

64x64x64

Swap block

32x32x32

Down-sample

Swap block

64x64x64

Swap block

64x64x64

32x32x32

Skip connection
Up-sample

x

z
y 2D 

Convolution 
on xy

Axes Swap

z

y
x

Axes Swap

y

x
z

Axes Swap

x

z
y2D 

Convolution 
on xz

2D 
Convolution 

on yz

fig 5.8 – Architecture of Swap-Unet. The idea of swapping axes was from [261].
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5.2 Generative AI

Generative AI has emerged as a popular technology in the field of medical imaging, revo-

lutionizing the way we diagnose and treat various healthcare conditions. dl models such

as gan and vae have been proposed to create highly realistic and high-resolution med-

ical images [82, 125]. These generative models can generate synthetic images of organs,

tissues, and anomalies, filling gaps in the limited datasets available for training and aiding

in tasks like disease detection, tumor segmentation, and treatment planning. Generative

AI for medical imaging holds great promise in improving the accuracy and efficiency of

diagnostic procedures, enabling early disease detection, and ultimately enhancing patient

care while reducing the burden on healthcare professionals.

5.2.1 Diffusion Models

Diffusion models, a category of deep generative models, have recently become a very

hot topic in the field of machine learning research [94, 227]. These models are designed

to capture and simulate complex probabilistic processes, making them particularly well-

suited for tasks that involve understanding and generating sequential data. Diffusionmod-

els have gained popularity in various fields, such as natural language processing, image

synthesis, and data generation. They are rooted in stochastic differential equations and

Bayesian inference. The key idea behind diffusion models is to iteratively update the data

by applying a series of transformations, which gradually make the data more similar to

the target distribution. These transformations are designed to be reversible, meaning they

can be undone. The diffusion models are reported to have the remarkable capability to

model uncertainty and generate data that is coherent and controlled. As a result, they

play a transformative role in the development of realistic content with high quality and

contextual relevance.

5.2.2 pet-guided Diffusion for spect Image Reconstruction

To enhance the effectiveness of medical image reconstruction using diffusion models, a

possible approach is to use guided diffusion as shown in Fig. 5.9. Guided diffusion is an

extension of the standard diffusion model that incorporates supplementary guidance or

conditioning information during the data generation process [63]. A future direction of

this thesis can be to use pet images as the conditioning information when training a

diffusion model for spect image reconstruction. This is motivated by the fact that pet

images have higher resolution and exhibit similar activity distribution as spect images.
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fig 5.9 – Architecture of stable diffusion model [200]. For spect image reconstruction,

one first train a spect diffusion model with pet images as conditions. After training, one

apply the diffusion model to posterior sampling methods.

5.3 Optimization Methods

Optimization methods play a crucial role in solving inverse problems they allow one to

find solutions or parameters that minimize a custom objective function. Therefore, it is

important to derive robust optimization algorithms that result in faster convergence and

enhance the quality of reconstruction.

5.4 Residual Invertible Neural Network (RINN)

Classical neural networks for solving inverse problems learn to only solve the reconstruc-

tion problem, whereas an invertible neural network (INN) [6] has the potential to learn

the physics based forward model, using additional latent output variables to capture the

information otherwise lost. Due to its invertibility (shown in Fig. 5.10), a model of the cor-

responding inverse process is also learned implicitly and can hence be used for solving

inverse problems. INNmethods have great potential to apply to medical image reconstruc-

tion like spect, due to its strong representation power [101] and improved interpretability.

However, directly training a network to learn the whole physical forward process can

be challenging, so we propose a novel framework known as residual invertible neural

network (RINN) that first uses an analytical projector that models the physical forward
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fig 5.10 – Comparison of regular Bayesian network and invertible neural network. The

standard direct approach requires a discriminative, supervised loss (SL) term between pre-

dicted and true x, causing problemswhen y → x is ambiguous. The INN uses a supervised

loss only for the well-defined forward process x→ y. Generated x are required to follow

the prior p(x) by an unsupervised loss (USL), while the latent variables z are made to fol-

low a Gaussian distribution, also by an unsupervised loss. Figure and caption are adapted

from [6].

process with acceptable accuracy, and then solves the inverse problem using that analyti-

cal projector as has always been done in mbir. This approach gives a reasonable posterior

estimate that can be used for residual learning. Fig. 5.11 shows the architecture of our pro-

posed RINN. To train our network, one first needs to run MC simulation, e.g., SIMIND,

with true image x as input and generate true projection y. (Here the image x could have

very fine voxels to avoid an inverse crime.) Next, run an mbir algorithm like osem, using

the analytical projector, to generate both reconstructed image x̃ and analytical projection

ỹ = Ax̃ + r̄. Finally, train the RINN with x − x̃ as input and y − ỹ as target. During

testing, as the reverse process is learned implicitly, with the difference between measured

projections and analytical projection as input, we hypothesize that the RINN can learn

the residual activity, compensating for imperfections in the osem reconstruction.

5.5 Denoising Projections with Unsupervised

Learning

5.5.1 Motivation

cnn with supervised learning for image denoising requires clean images as target, which

can be expensive to acquire. Recently, several unsupervised learning methods have been

proposed [140, 129, 14], where they assume the noise have zero-mean and are iid for each

pixel, so that training with noisy images as target is approximately equivalent to using
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fig 5.11 – Illustration of proposed residual invertible neural network (RINN). Images and

projections are 3D and this figure shows 2D slices.

clean images as ground truth. During spect image acquisition, projections are contami-

nated with noises, and the noise can be assumed to follow the zero-mean and independent

(but not iid) assumptions so that unsupervised learning methods may be adaptable to the

problem of denoising the projections and potentially improve the reconstruction quality.

5.5.2 Methods

We propose to embed the denoised projections (denoted by ỹi) into the traditional em

algorithm as a regularizer, leading to the following optimization problem:

x̂ = argmin
x

M∑
i=1

h([Ax+ r̄]i; yi) +
β

2
([Ax+ r̄]i − ỹi)2, h(t; y) ≜ t− y log(t) . (5.1)

The inner regularized em iteration update is

xk+1 = xk ⊙
(√

u2(β) + 4βd(xk)⊙ e(xk)− u(β)
)

� (2βd(xk)) , (5.2)
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where

d(xk) ≜ A
′ (Axk + r̄) , e(xk) ≜ A

′ (y � (Axk + r̄)) , u(β) ≜ A′ (1− βỹ) .
(5.3)

5.5.3 Preliminary Results

We implemented the Noise2Self [14] method and trained it on xcat phantoms [209].

Fig. 5.12 shows psnr to noisy and clean images vs. training epochs. Fig. 5.13 compares

true projection (noiseless), noisy projection (added with Poisson noise) and denoised pro-

jection by [14].

0 5 10 15 20
epochs (x10)

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

PS
NR

psnr2noisy
psnr2clean

fig 5.12 – psnr to noisy and clean images vs. training epochs using Noise2Self [14].

5.5.4 Next Steps

Weplan to apply unsupervised learning projection denoisingmethods to low-count spect

image reconstruction, and test onmore patients in terms of image quality of both denoised

projections and reconstructions. We will also give more consideration to the Poisson na-

ture of the noisy projections, which leads to independent, but non-zero mean and non-iid

distributions that differ from models in most self-supervised methods.

121



(a) True projection (b) Noisy projection (c) Denoised projection

(d) True projection (e) Noisy projection (f) Denoised projection

fig 5.13 – Visualization of true, noisy and denoised projection views. Top and bottom

rows correspond to two different slices.

5.5.5 Stochastic Expectation-Maximization with Variance

Reduction (SVREM)

Expectation-Maximization (em) is a popular tool but the whole dataset is needed in the

E-step. Stochastic em reduces the cost of E-step by stochastic approximation, but has a

slower asymptotic convergence rate. Chen et al. [35] proposed SVREM and showed that

it had the same exponential asymptotic convergence rate as em. Kereta et al. [119] applied

SVREM to pet image reconstruction and showed faster convergence rate compared to

other accelerated gradient descent algorithms [117, 57, 2, 111, 256]. Applying SVREM to

spect image reconstruction could be an interesting future direction.
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CHAPTER 6

Conclusion

This thesis demonstrates algorithms that aim to solve Poisson inverse problems in phase

retrieval and spect imaging. For phase retrieval, our contributions are novel algorithms

[149, 150, 148] that have faster convergence speed and lead to improved image reconstruc-

tion quality. For example, we propose modifications to the wf algorithm. Our method de-

termines the step size based on observed Fisher information and incorporates a quadratic

majorizer into our majorize-minimize approaches. We demonstrate that our methods are

effective and exhibit favorable convergence properties [150]. Furthermore, we explore

cases involving measurements affected by a combination of Poisson and Gaussian noise.

We propose the use of an innovative technique called "AWFS" which uses accelerated wf

with a score function as a generative prior. Theoretical analysis is conducted to showcase

the critical point convergence guarantee of our algorithm. Simulation results demonstrate

that our approach enhances reconstruction quality in terms of both visual perception and

numerical assessment.

For spect imaging, we focus on dl solutions [145, 143, 151]. We develop a Julia tool-

box [145] enables efficient modeling of spect forward-backward projectors with parallel

computing and minimized memory allocations. This facilitates effective backpropagation

during deep learning regularized iterative algorithm training, resulting in higher qual-

ity reconstructions compared to non-end-to-end methods. Moreover, we propose Dblur-

DoseNet [143], a deep neural network for joint dosimetry estimation and image deblur-

ring after spect reconstruction. It accurately estimates dose-rate distribution and com-

pensates for spect resolution effects. Evaluations on phantoms and patients show that

DblurDoseNet outperforms conventional dosimetry methods while being fast enough for

real-time clinical use in radionuclide therapy dosimetry. Additionally, we propose a neural

network with unsupervised learning to predict missing spect projections. Our method

aims to decrease acquisition time by obtaining only a subset of all projections. Ourmethod

outperforms linear interpolation techniques used to predict missing projection views in

terms of the achieved image reconstruction quality [151].
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As mentioned in Chapter 5, there are several potential avenues for further research.

These include investigating transfer learning techniques like finetuned sam for tumor

segmentation in spect images, exploring unsupervised methods for scatter correction in

spect imaging, and incorporating pet-guided diffusion into the reconstruction of spect

images. Similar methods can be employed to address 3D phase retrieval problems as well.

We will be excited to see explorations on these research directions and believe they have

the potential to improve the accuracy and efficiency of algorithms for solving Poisson

inverse problems.
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APPENDIX A

Proof of the Proposed Improved Curvature

Formula

This appendix proves that the improved curvature formula defined in (3.13) provides a

majorizer for the negative log-likelihood of the Poisson model in Chapter 3. For simplicity,

we drop the subscript i and irrelevant constants and focus on the negative log-likelihood

for real case for simplicity as in (2.13). One can generalize the majorizer derived here for

(2.13) to the complex case by taking the magnitude and some other minor modifications.

First, we consider some simple cases:

• If y = 0, then (2.13) is a quadratic function, so no quadratic majorizer is needed.

• If b = 0 and y > 0 then (2.13) has unbounded 2nd derivative so no quadratic ma-

jorizer exists.

• If b = 0 and r = 0, then y must be zero because a Poisson random variable with

zero mean can only take the value 0. Thus again quadratic majorizer is not needed.

So hereafter we assume that y > 0, b > 0. Under these assumptions, the derivatives

of (2.13) are:

ϕ̇(r) = 2r

(
1− y

r2 + b

)
, (A.1)

ϕ̈(r) = 2 + 2y
r2 − b

(r2 + b)2
, (A.2)

ϕ(3)(r) =
2yr(3b− r2)
(r2 + b)3

, (A.3)

where ϕ(3)(r) denotes the third derivative. Clearly, ϕ̇(r) is convex on (−∞,−
√
3b]

and [0,
√
3b], and concave on [−

√
3b, 0] and [

√
3b,+∞), based on the sign of ϕ(3)(r).
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A quadratic majorizer of ϕ(·) at point s has the form:

Φ(r; s) = ϕ(s) + ϕ̇(s)(r − s) + 1

2
c(s)(r − s)2, (A.4)

its derivative (w.r.t. r) is:

Φ̇(r; s) = c(s)(r − s) + ϕ̇(s). (A.5)

By design, this kind of quadratic majorizer satisfies Φ(s; s) = ϕ(s) and Φ̇(s; s) = ϕ̇(s).

From (A.3), we note that r2 = 3b is a maximizer of ϕ̈ so the maximum curvature is:

ϕ̈(r) ≤ 2y
2b

(4b)2
+ 2 = 2 +

y

4b
. (A.6)

Proposition: Φ(r; s) defined in (A.4) is a majorizer of ϕ(r) when c(s) = cimp(s),

where:

cimp(s) ≜

 ϕ̈(u(s)) , s ̸= 0,

lim
s→0

ϕ̈(u(s)) , s = 0,
(A.7)

where

u(s) ≜
b+
√
b2 + bs2

s
. (A.8)

By construction, the proposed curvature c(s) is at most the max curvature given in (A.6).

Proof: Because of the symmetry of ϕ̈(r), it suffices to prove the proposition for s ≥ 0

without loss of generality. First we consider some trivial cases:

1. If s = 0, one can verify lims→0 ϕ̈(u(s)) = 2. In this case, Φ(r; s) is simply

Φ(r; 0) = ϕ(0)+
1

2
c(0)r2 = r2+b−y log(b) ≥ r2+b−y log

(
r2 + b

)
= ϕ(r). (A.9)

2. If s =
√
3b, one can verify

ϕ̈(g(
√
3b)) = 2 +

y

4b
, (A.10)

which equals the maximum curvature.

Hereafter, we consider only s > 0 and s ̸=
√
3b. To proceed, it suffices to prove

∀r ∈ (−∞, s], ϕ̇(r) ≥ Φ̇(r; s), ∀r ∈ [s,+∞), ϕ̇(r) ≤ Φ̇(r; s), (A.11)
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because if (A.11) holds, then ∀r̃ < s:

Φ(s; s)− Φ(r̃; s) =

∫ s

r̃

Φ̇(r; s)dr ≤
∫ s

r̃

ϕ̇(r)dr = ϕ(s)− ϕ(r̃), (A.12)

and ∀r̃ > s:

Φ(r̃; s)− Φ(s; s) =

∫ r̃

s

Φ̇(r; s)dr ≥
∫ r̃

s

ϕ̇(r)dr = ϕ(r̃)− ϕ(s). (A.13)

Together with Φ(s; s) = ϕ(s), we have shown that (A.11) implies Φ(r; s) ≥ ϕ(r), ∀r ∈ R.
Substituting Φ̇(r; s) = c(s)(r−s)+ ϕ̇(s) into (A.11), one can verify that showing (A.11)

becomes showing

cimp(s) ≥
ϕ̇(r)− ϕ̇(s)

r − s
, ∀r ∈ R, r ̸= s. (A.14)

Furthermore, when s > 0, the parabola Φ(·; s) is symmetric about its minimizer:

δ = δ(s) ≜ argmin
r

Φ(r; s) = s− ϕ̇(s)

cimp(s)
=
s ϕ̈(u(s))− ϕ̇(s)

ϕ̈(u(s))
≥ 0. (A.15)

This minimizer is nonnegative because ϕ̇(s) ≤ 2s and

cimp(s) = ϕ̈(u(s)) = 2 +
ys2(b+

√
b2 + bs2)

b(b+ s2 +
√
b2 + bs2)2

≥ 2. (A.16)

Thus, if ϕ(r) ≤ Φ(r; s) when r ≥ 0, we have ϕ(−r) = ϕ(r) ≤ Φ(r; s) ≤ Φ(−r; s) =

Φ(r+2δ; s), so it suffices to prove (A.14) only for r ≥ 0, which simplifies (A.14) to showing

cimp(s) ≥
ϕ̇(r)− ϕ̇(s)

r − s
, ∀r ≥ 0, r ̸= s. (A.17)

In short, if (A.17) holds, then Φ(r; s) ≥ ϕ(r), ∀r ∈ R.
To prove (A.17), we exploit a useful property of cimp(s). Under geometric view, cimp(s)

defines (the ratio of) an affine function connecting points (u(s), ϕ̇(u(s))) and (s, ϕ̇(s)) is

tangent to ϕ̇(r) at point r = u(s), so that one can verify

ϕ̈(u(s)) = cimp(s) =
ϕ̇(u(s))− ϕ̇(s)

u(s)− s
, u(s) ̸= s. (A.18)

The reason why u(s) ̸= s is that one can verify u(s) = s implies s =
√
3b for s > 0 that

has already been proved above.
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Let ξ(r) = (ϕ̇(r) − ϕ̇(s))/(r − s), where r ≥ 0 and r ̸= s, plugging in ϕ̇(r) and ϕ̇(s)

yields:

ξ(r) = 2 +
2y(sr − b)

(s2 + b)(r2 + b)
. (A.19)

Differentiating w.r.t. r leads to:

ξ̇(r) =
2y

s2 + b
· −sr

2 + 2br + bs

(r2 + b)2
, (A.20)

where one can verify the positive root of −sr2 + 2br + bs = 0 is u(s) that is given by

(A.8).

Together with ξ̇(r) > 0 when r ∈ (0, u(s)) and ξ̇(r) < 0 when r ∈ (u(s),∞), we

have (A.17) holds because ξ(r) achieves its maximum at ξ(u(s)):

ξ(r) ≤ ξ(u(s)) = cimp(s). (A.21)
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APPENDIX B

Uniform Cramér–Rao Lower Bound Analysis

for Phase Retrieval Algorithms

This appendix
1
derives and analyzes the ucrlb for the phase retrieval problem, and then

compares the bias-variance trade-off between phase retrieval algorithms (e.g., Wirtinger

flow, Gerchberg-Saxton, phaselift, mm and admm) that were derived from mle where the

measurements follow i.i.d. Gaussian distribution. We also consider regularizers that ex-

ploit the assumed properties of the latent signal, e.g., ℓ2 norm and ℓ1 norm (approximated

by the Huber function) that corresponds to the sparsity of finite differences (anisotropic

tv) or of the detailed coefficients of a discrete wavelet transform. Simulation results show

that many phase retrieval algorithms can be biased so that the classical crlb fails to bound

their variance. Regularized algorithms that better approximate the properties of the true

signal have better bias-variance trade-offs (when compared to ucrlb) and lower recon-

struction error.

B.1 Motivation

It is well known that the variance of any unbiased estimator is bounded by the crlb,

however, many estimators, e.g., derived from regularized maximum likelihood (maximum

a posteriori in Bayesian setting) are typically biased. Hence their variance cannot be

bounded by the classical crlb. Hero et al. [93] proposed the ucrlb, which is a bound

on the smallest attainable variance that can be achieved using any estimator with bias

gradient of which norm is bounded by a constant. We analyzed the ucrlb for the chal-

lenging phase retrieval problem.

There have been several studies involving the classical crlb for phase retrieval in

the literature [191, 152, 8]. Balan and Bekkerman [8] derived and analyzed the crlb for

1
This work is based on [146].
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two different types of phase retrieval problems. Qian et al. [191] proposed a novel method

known as feasible point pursuit (FPP) that is based on quadratically constrained quadratic

programming (QCQP) and is measured against the classical crlb. However, we argue that

the classical crlb might not be very useful because it is unknown whether an estimator

determined by an iterative phase retrieval algorithm is unbiased or not, especially for

those with tuning parameters or regularizers. Instead, ucrlb should be used to evaluate

these algorithms, as will be presented next.

B.2 Methods

As discussed in the previous section, a limitation of the classical crlb analysis is that

unbiased estimation is often not practical. Instead, the uniform crlb is often used for

biased estimation [93]. For simplicity, we only consider the scalar ucrlb, which is the

smallest attainable variance of a single element of the true signal. Following Theorem 1 in

[93], the scalar ucrlb can be written as

Var(x̂j) ≥ Bγ ≜ (ej + vγ)
′F+(ej + vγ), (B.1)

vγ ≜ −(γC + F+)−1F+ej,

F ≜
4

σ2
GG′, G ≜ real{A′ diag{|Ax|}},

where F+
denotes the Moore–Penrose inverse of F , C is a positive definite matrix, and

ej is a unit vector whose the jth element is 1. The scalar ucrlb can be approximated by

a set of points

(
∥vγ∥C ,

√
Bγ

)
with varying γ and an appropriate choice of C . We used

C = I for simplicity (so ∥vγ∥C = ∥vγ∥2).
With the ucrlb, the limiting variance of an estimator becomes a function of the norm

of bias gradient, where empirically we approximate the bias gradient by [93]:

∇b(x̂) ≜ ∇x (E[x̂]− x) ≈
1

L− 1

L∑
l=1

(
x̂(yl)− x̂

)
(−∇f(x;yl))′ − I, (B.2)

where L denotes the number of realizations of y, I denotes an identity matrix, and x̂(yl)

denotes the estimator based on yl. x̂ is the sample mean of x̂(yl) shown as follows

x̂ ≜
1

L

L∑
l=1

x̂(yl). (B.3)
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Next, we define the norm of bias gradient for the jth element in∇b(x̂) by ∥δ(x̂j)∥C with

δ(x̂j) ≜ ∇b(x̂)′ej. (B.4)

Then, we estimate the variance of x̂j (the jth element in x̂) by the sample variance

Var(x̂j) ≈ e′j

(
1

L− 1

L∑
l=1

(
x̂(yl)− x̂

) (
x̂(yl)− x̂

)′)
ej. (B.5)

Finally we compare the point

(
∥δ(x̂j)∥C ,

√
Var(x̂j)

)
with the ucrlb, i.e., set of points(

∥vγ∥C ,
√
Bγ

)
, to illustrate the bias-variance trade-off of the corresponding estimator.

B.3 Experiments

B.3.1 Compared Algorithms

We compared the following algorithms with the ucrlb:

• Unregularized wf [27].

• Regularized wf with ℓ2 norm regularizer and ℓ1 norm approximated by the Huber

function h·(Tx;α). We set T to be the tv matrix or the detailed coefficients of

odwt.

• gs [75].

• PhaseLift with variant β for the nuclear norm [25].

• PRIME [192].

• admm [152].

B.3.2 Results

Fig. B.1 (b) shows that the wf and PRIME algorithm are biased with its variance below

the classical crlb but above the ucrlb, which illustrates the limitation of the classical

crlb; wf with ℓ2 norm regularization (wf-ridge) achieves the lowest variance for some

β [67], but at the cost of the largest bias; wf-tv is closer to the ucrlb compared to wf-

odwt, presumably due to the true signal is piece-wise uniform, which better matches

the assumption of tv regularization. Fig. B.1 (c) and Fig. B.1 (d) compare the nrmse of
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(a) (b)

(c) (d)

fig B.1 – ucrlb and nrmse comparison of phase retrieval algorithms. Subfigure (a) shows

the true signal.

phase retrieval algorithms. Algorithms based on the “magnitude model”, e.g., PhaseLift

and admm worked worse than unregularized wf and PRIME; for regularized algorithms,

we found that wf with tv regularization yielded better reconstruction than with odwt,

perhaps due to tv regularization better fits the assumed property of the true signal.
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APPENDIX C

Proof of the Critical Point Convergence for

the “AWFS” Algorithm

This appendix proves the “AWFS” algorithm in Chapter 3 has a critical point convergence

guarantee.

It was already shown that∇gPG is Lipschitz continuous, so the remaining problem is

to find a Lipschitz constant for s(x, σ). We assume that the data allows the neural network

to learn the score function well, i.e., pσ(x) = p(x)⊛N (0, σ2), where⊛ denotes (circular)

convolution. We start with some well-known lemmas where the proofs can be readily

found in [87, 160]. We include our proofs just for completeness.

Lemma C.1: The Fourier transform (and inverse transform) of an absolutely inte-

grable function is continuous.

Proof of lemma C.1: Let f be absolutely integrable and let f̃ be its Fourier transform.

We have

|f̃(w + h)− f̃(w)| =
∣∣∣∣∫ f(x)(e−2πjx(w+h) − e−2πjwx)dx

∣∣∣∣ ≤ ∫ |f(x)||e2πjxh − 1|dx

≤ max(|e2πjxh − 1|)
∫
|f(x)|dx ≤ 2

∫
|f(x)|dx. (C.1)

Using absolute integrability of f , we see |f̃(w + h)− f̃(w)| tends to 0 as h tends to 0, so

f̃ is uniformly continuous, which also implies it is continuous.

The proof of the inverse transform follows similarly.

Lemma C.2: Suppose a sequence of functions fi : R→ R converges in theL1
to some

function f , and that each fi is absolutely integrable. Then f is also absolutely integrable.

Proof: Because

lim
i→∞

∫ ∞

−∞
|fi(x)− f(x)|dx = 0 (C.2)
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and that

∫∞
−∞ |fi(x)|dx <∞. It follows that∫ ∞

−∞
|f(x)|dx <

∫ ∞

−∞
|f(x)− fi(x)|dx+

∫ ∞

−∞
|fi(x)|dx, (C.3)

for any i. The second integral is always finite, and for sufficiently large i, the first integral

must be finite as it converges to 0. Hence it is possible to find i such that both integrals

converge, so f is absolutely integrable.

Proposition C.1: The derivative of log(pσ(x)) is bounded on the interval [−C,C].
Proof: We start by dropping constant factors and using derivative of a convolution, we

have

d

dx
(log(p(x)⊛N (0, σ2))) ∼ F

−1(ıxF(p(x)) · F(N (0, σ2)))

p(x)⊛N (0, σ2)
∼ F

−1(xe−x2 · F(p(x)))
p(x)⊛N (0, σ2)

(C.4)

where F denotes Fourier transform. The denominator is continuous and since x lies in a

closed interval by assumption, has a lower boundM > 0 by the extreme value theorem.

We next consider the numerator.

By [81, pp. 65], a sequence of Gaussian mixture models (gmm) can be used to approx-

imate any smooth probability distribution in L2
convergence. Furthermore, L2

conver-

gence implies L1
convergence. Hence, consider a sequence of gmm fi that converge in L

1

to p(x). By linearity of Fourier transform,F(fi(x))must be a linear combination of terms

of the form e−(x−µi)
2/ci

for some ci. Thus, the numerator xe−x2 · F(fi(x)) is a finite linear
combination of terms of the form xe−(x−µi)

2/ci
, each of which are absolutely integrable.

Therefore, we have a sequence of functions, each of which are absolutely integrable, that

converge in L1
to xe−x2 · F(p(x)), so by Lemma C.2, this is also absolutely integrable.

By Lemma C.1, the inverse Fourier transform of this is continuous. Finally, again by the

extreme value theorem and using the boundedness of x, the numerator is bounded above

by someM ′ > 0. Hence, the entire expression (C.4) is bounded above byM ′/M .

Lemma C.3: Suppose we have an everywhere twice differentiable function of two

variables f(x, y) : R2 → R. Then ∂2

∂x∂y
log f(x, y) is bounded if the following three condi-

tions are met:

1.
∂2

∂x∂y
f(x, y) is bounded.

2. f itself is bounded below by a positive number and also bounded above.

3. ∇f is bounded.
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Proof: Suppose we have f(x, y) satisfying those three conditions. We compute the

second partial derivative of its log:

∂

∂x
log f(x, y) =

∂
∂x
f(x, y)

f(x, y)
. (C.5)

and

∂2

∂x∂y
log f(x, y) =

( ∂2

∂x∂y
f(x, y))f(x, y)− ( ∂

∂x
f(x, y))( ∂

∂y
f(x, y))

f(x, y)2
. (C.6)

From the second condition, the denominator is bounded below by a positive number, so

it suffices to consider the boundedness of the numerator. The first term of the numerator

is a product of two quantities, the first of which is bounded by the first condition and the

second of which is bounded by the second condition. The second term of the numerator is

also a product of two quantities, both of which are bounded by the third condition. Thus,

this shows
∂2

∂x∂y
log f(x, y) is bounded.

Proposition C.2: The gradient of log(pσ(x)) is Lipschitz continuous on [−C,C]N .
Proof: By renaming the variables, and redefining f(x, y) = p(x, y, · · · ), we may consider

the boundedness of
∂2

∂x∂y
(log f(x, y)⊛N (0, σ2I)) on [−C,C]2. To apply LemmaC.3 to re-

move the log, we need to verify the three conditions. Define g(x, y) = f(x, y)⊛N (0, σ2I).

The second condition is readily verified to be true: By assumption, x and y take values on

a closed interval, thus by the extreme value theorem, so does g(x, y). Further, g is a con-

volution of positive numbers and so the output is always positive, hence, the lower bound

of this closed interval is a positive number, verifying this condition.

For the third condition, we need to consider boundedness of
∂
∂x
f(x, y) ⊛ N (0, σ2I).

This is nearly identical to Proposition C.2, with the only difference being we have some

general function in terms of only x f(x, y) instead of a probability distribution p(x). The

proof of that lemma is readily adapted for this case with the only condition needing ver-

ification being the absolute integrability over x of f(x, y). In fact, this is clear because f

is always positive; hence, integrating over f with respect to x must yield a finite number

as integrating a second time over y yields 1.

It thus suffices to consider boundedness of h(x, y) = ∂2

∂x∂y
(f(x, y)⊛N (0, σ2I)). It

is assumed that f is smooth and the convolution of smooth functions is smooth, which

implies f(x, y) ⊛ N (0, σ2I) is smooth. Hence h is differentiable, so it is continuous. By

the extreme value theorem, as x and y take values on a closed interval, hmust be bounded.

By Lemma C.3, the entries of the Hessian of the score function are bounded. Therefore, a

Lipschitz constant of sθ(x) exists.
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Proof of Theorem 2: By Proposition C.2, and from the design of Algorithm 4, xt,k

and wt,k are both bounded between [0, C] for all t, k, so the Lipschitz constant L∗
of

∇gPG(·)+ sθ(·) exists. With the step size µ satisfying 0 < µ < 1
L∗ , and the weighting fac-

tor γ ∈ {0, 1} being chosen according to whichever higher posterior probability between

pσk
(z|A,y, b̄, r) and pσk

(v|A,y, b̄, r) (where pσk
(x|y,A, b̄, r) ∝ p(y|A,x, b̄, r)pσk

(x)),
then we satisfy all conditions in Theorem 1 of [141], which establishes the critical-point

convergence of the inner iteration sequence xt,k in Algorithm 4 for the posterior distribu-

tion pσk
(x|A,y, b̄, r). Similar convergence analysis can be found in [77].
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