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ABSTRACT

We live in a world where many objects cannot be imaged directly and hence rely on
reconstruction algorithms to solve the corresponding inverse imaging problems. However,
lots of information is contaminated or even lost when samples are collected by imaging
devices, so that the resulting inverse problem is ill-posed and challenging to solve. As the
recorded photon arrivals by the sensor are often assumed to follow Poisson distributions,
algorithms for solving Poisson inverse problems are crucial. This thesis tackles two appli-
cations where Poisson inverse problems arise: phase retrieval and single photon emission
computerized tomography (SPECT).

For phase retrieval, we propose novel optimization algorithms working in low-count
regimes, including a novel majorize-minimize (Mm) algorithm, a modified Wirtinger flow
algorithm using the observed Fisher information for step size and a generative image prior
based on score matching. Our proposed algorithms lead to faster convergence rate and
improved reconstruction quality evaluated both qualitatively and quantitatively.

For spECT imaging, we focus on deep learning (DL) solutions including: 1) We pro-
pose end-to-end training of unrolled iterative convolutional neural network (cNN) using
our memory efficient Julia toolbox for SPECT image reconstruction. 2) We propose a DL
algorithm for joint dosimetry estimation and image deblurring for estimating patient’s
absorbed dose-rate distribution in radionuclide therapy. 3) We propose unsupervised

coordinate-based learning for predicting missing SPECT projection views.

xiii



CHAPTER 1

Introduction

1.1 Contributions

The contributions of works in this thesis can be summarized as follows.
1. Phase Retrieval.

« We develop algorithms to address the challenges of low-count regimes in the
Poisson phase retrieval problem. Our proposed approach involves a modified
Wirtinger flow (wF) algorithm that uses a step size determined by the observed
Fisher information, as well as a novel curvature for majorize-minimize algo-
rithms that incorporates a quadratic majorizer. Through simulated experimen-
tation with different system matrices, we demonstrate the effectiveness and
convergence properties of our methods. The simulation results reveal that our
approaches not only enable successful recovery in extremely low-count sce-
narios but also outperform previous methods in terms of speed of convergence.

This work is based on published papers [60, 61].

+ In addition, we investigate situations where the measurements are influenced
by a mixture of Poisson and Gaussian noise. We introduce a novel method
called “AWFS” that employs accelerated wF with a score function as a gener-
ative prior. We provide theoretical analysis to demonstrate the convergence
guarantee of the proposed algorithm at critical points. Results from simula-
tions illustrate that our approach improves reconstruction quality in terms of

both visual perception and numerical assessment. This work is based on [39,

59].

2. SPECT Imaging.



+ We develop an efficient Julia toolbox for modeling specT forward-backward
projectors’. This toolbox uses multi-threading and in-place operations to en-
able parallel computing and reduce memory allocations. As a result, our pro-
posed SPECT projector allows for efficient backpropagation during the train-
ing of deep learning regularized iterative algorithms in an end-to-end manner.
This approach has shown potential for producing higher quality reconstruc-
tions compared to methods without end-to-end training. This work is based

on published paper [56].

« We propose a deep neural network (DblurDoseNet) for joint dosimetry estima-
tion and image deblurring after sPECT reconstruction that produces accurate
dose-rate distribution estimates as well as compensating for sPECT resolution
effects. Evaluations both on phantoms and patients demonstrate that the pro-
posed DblurDoseNet can outperform the current gold standard, i.e., Monte
Carlo (mc) based methods, and is also fast enough for real-time clinical use in

radionuclide therapy dosimetry for treatment planning [58, 54].

« We propose a neural network with unsupervised coordinate-based learning to
predict missing SPECT projections before reconstruction. Our method aims to
decrease the acquisition time for SPECT by only obtaining a subset (e.g., one
fourth) of all projections. Our unsupervised approach achieves improved qual-
ity in image reconstruction when compared to linear interpolation methods
used for the prediction of absent projection views. This work is based on pub-
lished abstract [62].

1.2 Outline

Chapter 2 provides the necessary background on the mathematical frameworks we use
for modelling Poisson inverse problems. It introduces the details of phase retrieval, sPEcT
image reconstruction and dosimetry. Chapter 3 introduced our proposed algorithms for
the phase retrieval problem. Chapter 4 focuses on DL solutions in sPECT imaging, from ac-
qusition, reconstruction, to post processing. Chapter 5 discusses current challenges faced
and explores potential avenues for future research. One of the major challenges is address-

ing the limited amount of training data for large 3D images, prompting the exploration

Thttps://github.com/JulialmageRecon/SPECTrecon.jl


https://github.com/JuliaImageRecon/SPECTrecon.jl

of techniques like transfer learning and active learning. Additionally, we delve into top-
ics such as generative Al, multi-modality imaging, and optimization approaches from a
computational perspective. Chapter 6 concludes this thesis.

The appendix provides more in depth algorithmic detail than is provided in the main
chapters as well as other supplementary materials. In particular, Appendix A derives an
improved curvature of the quadratic majorizer in the mm algorithm for Poisson phase
retrieval in Chapter 3. Appendix B derives and analyzes the ucrLB for the wr algorithm
in Chapter 3. Appendix C provided detailed analysis on the critical-point convergence

guarantee of the “AWFS” algorithm in Chapter 3.



CHAPTER 2
Background

This chapter first introduces inverse problems mathematically and presents a generic
framework for addressing such problems. We then present the background for phase re-

trieval and quantitative sPECT imaging in sufficient detail as two areas where inverse

problems arise.

2.1 Inverse Problems
2.2 Phase Retrieval !

2.3 Quantitative sPECT Imaging

IThis section is largely taken from [61].



CHAPTER 3

Poisson Inverse Problems in Phase Retrieval'

3.1 Poisson Phase Retrieval in Low-count Regimes*

3.2 Poisson-Gaussian Phase Retrieval with

Score-based Image Prior’

3.2.1 Motivation

In practical scenarios, the measurements y are often contaminated by both pG noise. The
Poisson distribution is due to the photon counting and dark current [105]. The Gaussian
statistics stem from the readout structures (e.g., analog-to-digital converter (ADC)) of com-
mon cameras. Fig. 3.1 illustrates the pG mixed noise statistics in the holographic pr. Be-
cause the pG likelihood is complicated, most previous works [11, 10, 86, 43, 9, 90, 77, 9, 33,
74,104, 32, 42, 63, 113, 96, 12, 110, 98, 35, 111, 4, 100, 49, 57, 34, 61, 30, 16, 6, 116, 14| approximate
the Poisson noise statistics by the central limit theorem and work with a substitute Gaus-
sian log-likelihood estimate problem or use the Poisson maximum likelihood model but
simply disregard Gaussian readout noise. Other more complicated approximation meth-
ods have also been proposed, such as the shifted Poisson model [88], the unbiased inverse
transformation of a generalized Anscombe transform [70, 99], and the majorize-minimize
algorithm [29]. However, these approximate methods can lead to a suboptimal solution af-
ter optimization that results in a lower-quality reconstruction. Apart from the likelihood
modeling, the regularizer R(x) provides prior information about underlying object char-
acteristics that may aid in resolving ill-posed inverse problems. Beyond simple choices of

R() such as Tv or the Li-norm of coefficients of wavelet transform [23], deep learning

This chapter is based on [60, 61, 59].
2This section is based on [61].
3This section is based on [39, 59].
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FIG 3.1 - Illustration of Poisson and Gaussian noise statistics in holographic phase re-
trieval.

(pL)-integrated algorithms for solving inverse problems in computational imaging have
been reported to be the state-of-the-art [76]. The trained networks can be used as an ob-
ject prior for regularizing the reconstructed image to remain on a learned manifold [7].
Incorporating a trained denoising network as a regularizer R(-) led to methods such as
plug-and-play (pNP) [13, 117, 46] and regularization by denoising (RED) [80]. In contrast
to training a denoiser using clean images, there is growing popularity of self-supervised
image denoising approaches that do not require clean data as the training target [51, 5,
107]. In addition to training a denoiser as regularizer, generative model-based priors have
also been proposed [3, 109]. Recently, diffusion models have gained significant traction
for image generation [91, 37, 28, 93]. These probabilistic image generation models start
with a clean image and gradually increase the level of noise added to the image, resulting
in white Gaussian noise. Then in the reverse process, a neural network is trained to learn
the noise in each step to generate or sample a clean image as in the original data distribu-
tion. The score-based diffusion models estimate the gradients of data distribution and can
be used as plug-and-play priors for inverse problems [36] such as image deblurring and
MRI and CT reconstruction [50, 41, 21, 22, 68, 92]. However, the realm of using score-based
models to perform phase retrieval is relatively unexplored; previous relevant works [87,
36] applied pDPM to PR but with less realistic system models and under solely Gaussian
or Poisson noise statistics.

In summary, our contribution is three-fold:

« We present a new algorithm known as accelerated wr with a score-based image
prior (i.e.,, V R(x)) to address the challenge of holographic pr problem in the pres-

ence of PG noise statistics.



« Theoretically, we derive a Lipschitz constant for the holographic pr’s pG log-likelihood
and subsequently demonstrate the critical points convergence guarantee of our pro-

posed algorithm.

« Simulation experiments demonstrate that: 1) Algorithms with the pc likelihood
model yield superior reconstructions in comparison to those relying solely on ei-
ther the Poisson or Gaussian likelihood models. 2) With the proposed score-based
prior as regularization, the proposed approach generates higher quality reconstruc-
tions and is more robust to variation of noise levels without any parameter tuning

compared to alternative state-of-the-art methods.

3.2.2 Methods

3.2.2.1 Score Function and Diffusion Models

Let pg () denote a model for the prior distribution of the latent image x; the score function
is then defined as* sg(x) = V log pg(x). Consider a sequence of positive noise scales (for
white Gaussian N/ (0, 0,%)): o1 > 09 > - -+ > 0k, with o being small enough so that noise
of this level does not visibly affect the image, and o; depending on the application. Score

matching can be used to train a noise conditional score network [102, 91] as follows:

(So(ivagk) - j)j :

o
where x ~p(x), &~ x+N(0,020). (3.1)

K
0 = argmin E Ee s
o =1

With enough data, the neural network sg (¢, o) is expected to learn the distribution p, () =
[ p(x)po (y|x)dx where p,(y|z) = N (x,0I). To sample from the prior, the method of
Langevin dynamics is frequently used [91]. To leverage diffusion models for solving in-
verse problems, previous methods generally recast the reconstruction problem as a condi-
tional generation or sampling problem [87, 36, 93, 20, 92, 19]. This involves relying on the
capacity of diffusion models to produce high-quality images while complying with data-
fidelity constraints. However, in applications where data collection is costly, i.e., with a
limited amount of training data, it is often challenging to train a diffusion model that can
generate high-quality images even in an unconditional way. Under these conditions, we
found that the score function learned during training diffusion models can serve as an

effective image prior, which can capture certain data characteristics when trained for the

*This definition differs from the score function in statistics where the gradient is taken w.r.t. @ of
log pe ().



denoising prediction in the reverse process of the diffusion model. Similar to previous
works [36] that uses the score function as a PNP prior, here we also incorporate the score
function as a regularization in the optimization objective for solving the PR problem. We
believe this is a more efficient scheme for incorporating diffusion priors especially for ap-
plications with a limited amount of training data, a very common situation in the optical

imaging sector.

3.2.2.2 Likelihood Modeling and wr

Based on the physical model as demonstrated in Fig. 3.1, we model the system matrix A
by the (oversampled and scaled) discrete Fourier transform applied to a concatenation of
the sample x, a blank image (representing the holographic separation condition [49]) and
a known reference image R, similar to (??), the measurements y follow the Poisson plus

Gaussian distribution:
y ~ N (Poisson (|A(z)|* + b) ,0°I), A(z)£ aF{[z,0,R]}. (3.2)

Here o denotes the variance of Gaussian noise, and o denotes a scaling factor (quantum
efficiency, conversion gain, etc.) after applying the Fourier transform. So that the negative

log-likelihood of (3.2) is

2
M o —(lafx*+5:) (14/ml2 L B\ _((y%z) )
= ¢ (lalx|> +b;)" e
wa(@ =2 ai(#), gl £ -log | 3 { e

(3.3)

Here M denotes the length of y, a; denotes the ith row of A (since A is linear). WF can

be used for estimating x:

Vgra(z) = 2A" diag{¢;(|ajz|* + bi;y;) } Az, (3.4)
Cvaq Sluv-1) N = a” 7<b¢*§z)2
o(u;v) =1 —s(u,v) . s(a,b) = 2 ¢ .

Lemma. The function ¢(u) is Lipschitz differentiable and the Lipschitz constant for

(b(u) is:

2ymax—1

max{|d(u)[} £ p = (1= ¢77) ™F where ypor = _max {y}. (39)
1e{1,....M}

The proof is given in [18].



Theorem 1 Assume |z;| is bounded above by C' for each j, a Lipschitz constant of V gp ()
is

£(Vgea) 22/ Al (202 AJIZ Ginex + [1 = C* AL §

ymax
_ 1 2ymax—1
(1 —e 02> e o2 .

M.

).

(>

ym ax

where s is max;{[yi]} 7 = 1,

Proof: Let gpc(x) denote a function that maps a vector & € R” to a scalar; it is the
sum of each g;(x) = ¢;(|a'x|*> + bj;y;) over i = 1,..., M. Let g(x) denote a function

that maps a vector € R" to the measurement space y € R it is the concatenation of
each g;(x). So Vgpa(z) € RY , V2gpa(x) € RV*Y, and Vg(x) € RM*V,
By the chain rule, the Hessian of gpg is

Vigpa(x) = 2A’ (diag{ Az} Vg () + diag{g(z)} A) . (3.7)

Assume |z;| is bounded above by C' for each j. Then it follows that || diag{Az}|, <

C||Al|s by the construction of matrix-vector multiplication, leading to a Lipschitz con-
stant for Vgp(x):

L(Vgpc) =2C| A2 | All | Vg()ll2 + 2]| All2 || diag{g ()} ]>- (3.8)

Here £(Vgpc) denotes a Lipschitz constant for Vgpg, not necessarily the best one. To

compute ||Vg(z)||s, we substitute the Lipschitz constant of ¢(u) into (3.4) and apply
Lemma 3.2.2.2, leading to

o

IVg(z)]l2 < 2C||All2]| Al (1 _ 6—72) e,

(3.9)
To compute || diag{g(x)}|2, let
t € [b,max;{|alx|*} +b] C T = [b,C*|A|% + b]. (3.10)
From the fact that ¢(t) < 1 by its construction, one can derive that
I diag{g(2)} 2 = lg() o < maxier{|o()|} < |1 — C*| Al max{|o(t)[}]. (3.1)

Combining (3.8), (3.9) and (3.11) completes the proof of Theorem 1.



However, due to the infinite sum in Poisson-Gaussian log-likelihood (3.3), we approx-

imate s(a, b) with a finite sum following [18]:
n —n 2
s(a,b) ~ Z a—(f(%) , nt=[n"+d0], (3.12)

with n* given by

n*=oW (%6b/02)
o (% log (;) — log (% log (?)))
= glog <%> —olog (% log (%)) , (3.13)

where W(-) denotes the Lambert function. The accuracy of this approximation is con-
trolled by J. Reference [18] provides a comprehensive analysis on the maximum error

value of the truncated sum (3.12) and found the bound was very precise.

3.2.2.3 Accelerated wr with Score-based Image Prior

Algorithm 1: Our proposed accelerated wr with score-based image prior.

Input: Measurement y, system matrix A, momentum factor 7y = 1, step size
factor /3, weighting factor ~, truncation operator P () — [0, C]; initial image
Ty, initial auxiliary variables zy = wy = vy = @, initialize 01y > 09 > -+ > 0.

fork=1: K do

fort=1:Tdo

Set step size u = fo}.

Set Az, = M=bk

n:k (Zep — Teg)-

Set AIU{; = —m;]lt’,z_l (CL’t7k — wt—l,k)-

Set wy, = Po (e + Az + Az g).

Compute Sg (¢ 1, 0%) and sg(w; ., o).

Set 2115 = Wi — 1 (Vgpa(wer) + se(wek, o).
Set viy1 k= @i — 1 (Vapa (i) + So(Trk, 0k))-

Set a1 s = 1 (1 +. 1+ 4n§k>-

Set 16 = Po (Vepzer1h + (1 — Yek)Ves1k)-
end

end
Output: Return &7 .
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For accelerating the wr algorithm, we followed the implementation of [52] as its con-
vergence guarantee was proved. Assuming that the true score function can be learned
properly, when we have a trained score function s¢(x, o) by applying (3.1), the gradient
descent algorithm for MAP estimation has the form: x; 1 = ©; — (Vg(x;) + se(xs, 01)).
Algorithm 1 summarizes our proposed AwFs algorithm. In a similar fashion as Langevin
dynamics, we choose o to be a descending scale of noise levels. In practice, we generally
use each noise level a fixed number of times, with geometrically spaced noise levels be-
tween some lower and upper bound. The step size factor 5 in Algorithm 1 can be selected
empirically, but we show that the Lipschitz constant of the gradient Vgpg () + sg (¢, 0% )
exists as demonstrated in Theorem 2 (the proof is given in the Appendix C).

We assume that the data allows the neural network to learn the score function well,
ie., so(x,0) ~ Vlog(p,(x)), and p,(x) = p(x) ® N(0,0?), where ® denotes (circular)
convolution. One can show that V log(p,(x)) is Lipschitz continuous on [—C, C]". The

proof is given in Appendix C. Using p,(x), we define the smoothed posterior as

Po(2| A, y,b,7) o ply| A, @, b,7)p, (). (3.14)

Theorem 2 For a smooth density function p,, (x) that has finite expectation with o), > 0,
the Lipschitz constant of Vgpg (@i x) + Se(@tx,0x) exists when each element in x; ), sat-
isfies 0 < |z;| < C for each j. Furthermore, if the weighting factor v € {0,1} is cho-
sen appropriately following [52], i.e., according to the higher posterior probability between
Do, (2|y, A, b,7) and p,, (v|y, A, b, r); then with sufficiently small 3, the inner iteration
sequence {x; 1.} generated by Algorithm 1 is bounded, and any accumulation point of {a, 1. }

is a critical point of the posterior distribution p,, (x|y, A, b,r) in (3.14).

Proof: By Lipschitz continuity of log(p,(x)), and from the design of Algorithm 1, x;
and w;; are both bounded between [0, C] for all ¢, k, so the Lipschitz constant £* of
Vgpa(-) + se(-) exists. With the step size y satisfying 0 < p < 2, and the weighting
factor v € {0,1} being chosen according to the higher posterior probability between
Do, (2] A, y,b,7) and p,, (v|A,y,b,T) (see [52]), we satisfy all conditions in Theorem 1
of [52], which establishes the critical-point convergence of the sequence x, ;, generated by
Algorithm 1 for any oy, k = 1, ..., K. Hence the sequence x, ; generated by Algorithm 1

converges as t — oo to a critical-point of the posterior p,, (z|A,y, b, r) for any oy,
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3.2.3 Experiment

3.2.3.1  Experiment Settings

Dataset. We tested all algorithms on three datasets: 162 histopathology images related
to breast cancer [2] (train/val/test is 122/20/20); 920 images from CelebA dataset [65]
(train/val/test is 800/100/20); and 720 images from a homemade cT-density dataset
(train/val/test is 600/100/20). The cT-density dataset was generated from SPECT/CT im-
ages for Yttrium-go radionuclide therapy after applying the cT-to-density calibration
curve [54]. Although the size of training datasets are relatively small compared to typ-
ical datasets such as ImageNet or LSUN [37, 93] that have millions of images, we do not
require the score functions to learn image priors strong enough to generate realistic im-
ages from white Gaussian noise; rather, it is sufficient for the priors to be able to denoise
moderately noisy images.

System Model. Similar to (??), we define the system matrix to be discrete Fourier
transform of the concatenation of the true image «, a blank image 0 and a reference
image R with scaling and oversampling. We set the scaling factor « to be in the range
[0.02,0.035] so that the average counts per pixel range from 6 to 25; the oversampled ratio
is set to 2. We set R to be a binary random image similar to what was used in [49]. The
standard deviation of the Gaussian read noise added to the measurements y was set as
o € 10.5,1.5].

Implemented Algorithms. For unregularized algorithms, we implemented Gaussian
WwF, Poisson wr and Poisson-Gaussian wr. For regularized algorithms, we implemented
smoothed total variation (Tv) based on the Huber function [40, p. 184] and PNP/RED meth-
ods with the pL denoiser [118]: PNP-ADMM [101], PNP-PGM [45], and RED-sD [80]. We also
implemented the RED-sD algorithm with “Noise2Self” zero-shot image denoising network
[5] (RED-sD-SELF). For diffusion models, we implemented poLprH [87] and our proposed
AwFs. The implementation details of each algorithm can be found in the appendix of [59].
We used spectral initialization [69] for the Gaussian PR and Poisson PR methods; we then
used the output results from Poisson PR to initialize other algorithms. We ran all algo-
rithms until convergence in normalized root mean squared error (NRMSE) or reached the
maximum number of iterations (e.g., 50).

To evaluate the robustness and limitation of these algorithms, we first tuned the pa-
rameters for each algorithm at the noise level when av = 0.030 and o = 1, and then held
them fixed throughout all experiments (Table 3.1, Table 3.2, Fig. 3.7 and Fig. 3.8). In prac-

tice the ground truths are unknown, so oracle tuning of test datasets is infeasible (though
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TBL 3.1 - ssim and NRMSE for Poisson and pG likelihoods. Results were averaged across

7 different noise levels by varying o € 0.02 : 0.005 : 0.035 in (3.2).

Likelihood ‘ Unregularized (SSIM/NRMSE) ‘ DOLPH (SSIM/NRMSE) ‘ AWFS (SSIM/NRMSE)
DataSet: Histopathology [2]

Gaussian 0.52 +0.18 41.2 + 253 0.76 +£ 0.07 | 18.0 £3.0 | 0.84 = 0.06 | 16.2 3.7

Poisson 0.54 +0.18 31.7 £10.2 0.724+0.13 | 19.54+6.1 | 0.83 £ 0.06 | 16.2 3.7

Poisson-Gaussian | 0.57 £ 0.18 28.9 9.0 0.80 & 0.06 | 16.0 =29 | 0.85+ 0.05 | 15.4 + 3.7
DataSet: CelebA [65]

Gaussian 0.31 £ 0.09 55.6 +£13.9 0.70 £0.12 | 145+174 | 0.72 £ 0.16 | 15.3 = 11.8

Poisson 0.39 + 0.10 245+ 114 0.61£0.12 | 156 £10.6 | 0.72 £ 0.16 | 15.2 £ 11.8

Poisson-Gaussian | 0.42 + 0.10 21.8 + 9.1 071+ 0.11 | 13.7 +11.1 | 0.74 £ 0.15 | 14.8 = 11.9
DataSet: cT-Density

Gaussian 0.29 £ 0.09 50.5 + 8.0 0.51+0.12 | 224 £+3.9 0.82 £0.11 | 19.1+ 4.8

Poisson 0.19 + 0.06 48.9 +13.1 038011 | 25,675 | 0.84 £0.08 | 17.8 £ 4.3

Poisson-Gaussian | 0.24 4 0.06 40.8 £9.5 0.55+0.08 | 20.0 3.3 | 0.88 + 0.05 | 16.4 + 3.7

some form of cross validation may be possible). Though the numbers reported could fluc-
tuate after careful refinement, e.g., by performing grid search on tuning parameters, such
techniques would potentially impede the algorithm’s practical use.

Network Training. For PNP denoising networks, we trained all denoisers on different
noise levels o € {9,11,13,15} and found that 0 = 15 worked the best on our data. We
also used the denoiser scaling technique from [112] to dynamically adjust the performance
of all pnP methods. To perform score matching, we applied 20 geometrically spaced noise
levels between 0.005 and 0.1 on each of the training images. All networks were imple-
mented in PyTorch and trained on an NVIDIA Quadro RTX 5000 GPU using the ADAM
optimizer [48] for 1000 epochs with the best one being selected based off the validation
error, i.e., the mean squared error (MSE) loss.

3.2.3.2 Results

We compared all implemented algorithms both qualitatively, by visualizing the recon-
structed images and residual errors, and quantitatively, by computing the NRMSE and
structural similarity index measure (ssim) [108]. Due to the global phase ambiguity, i.e., all
the algorithms can recover the signal only to within a constant phase shift due to the loss
of global phase information, we corrected the phase of & by Zcorrected = SIgN({£, Tirue)) 2

Fig. 3.2 shows experiments of running unregularized methods based on different noise

models on the histopathology, CelebA, and CT density datasets. For comparison, we ran

13



¥ 5 ¥ " I - 1

Gaussian-Amp Fj . Poisson ; & PG f
LS B - ‘ v
y

(] ] 4
j!‘ JE Gaussian { [

E. 2
& 4%
L .

w4 1 . Fr il
bl & b r ¥ 'R

1 L%round truth

— -ﬂ!l
a
'y

|
|
[
|

SSIM NRMSE 0.53 27.3% 0.36 40.5% | 0.52 26.4% 0.55 24.9%
FUL! W S FULI

Ground truth Gaussian Gaussian-Amp Poisson

SSIM NRMSE 0.40

FIG 3.2 - Reconstructed images by unregularized methods (Gaussian, Gaussian-
Amplitude, Poisson and Poisson-Gaussian) on Histopathology dataset [2], celebA dataset
[65] and CT-density dataset. The bottom left/right subfigures correspond to the zoomed
in area and the error map for each image. We used o = 0.035 and o = 1.

the unregularized methods with a Gaussian only noise model, Poisson only, and PG noise
model.

Fig. 3.3, Fig. 3.4 and Fig. 3.5 visualize reconstructed images generated by algorithms
mentioned in the previous section. The wr with pG likelihood outperforms wr with Pois-
son likelihood with a consistently higher ssim and lower NRMSE. Moreover, we found
unregularized Gaussian wr failed to reconstruct images similar to what was reported in
[77]. Of the regularized algorithms with paG likelihood, our proposed AwFs had less visual
noise and achieved greater detail recovery compared to other methods, as evidenced by
the zoomed-in area in these figures. Fig. 3.6 shows that for a variety of datasets, when
combined with the AwFs method, while the Poisson only and Gaussian only models lead
to reasonable reconstructions, the PG noise model leads to the highest quality image. For
all three datasets shown, when used in conjunction with our Awrs method, including

both Poisson and Gaussian likelihoods results in the highest quality reconstruction both
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FIG 3.3 — Reconstructed images on dataset [2]. The bottom left/right subfigures corre-
spond to the zoomed in area and the error map for each image. o and o were set to 0.02
and 1, respectively.
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FIG 3.4 — Reconstructed images on celebA dataset [65]. The bottom left/right subfigures
correspond to the zoomed in area and the error map for each image. o and o were set to
0.035 and 1, respectively.

in terms of quantitative metrics as well as visually. Thus, although the score function pro-
vides a useful prior for recovering an image when the measurement is very noisy, a proper

noise model is also crucial to a high quality reconstruction.
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FIG 3.5 — Reconstructed images on cT-density dataset. The bottom left/right subfigures
correspond to the zoomed in area and the error map for each image. o and o were set to
0.035 and 1, respectively.

For quantitative evaluations, Table 3.1 exemplifies the effect of using our proposed rG
likelihood as compared to the simpler Poisson likelihoods. We did not run the Gaussian
likelihood with poLPH or AWFS due to the abysmal performance with this likelihood. In
all cases, usage of the pG likelihood results in improved image quality in terms of both
metrics. Table 3.2 consists of experiments using the pc likelihood and shows the efficacy
of the proposed Awrs method over other methods. In particular, our AwFs had superior
quantitative performance over all other compared methods on the histopathology and cT-
density datasets; in contrast, the pNP-PGM showed the lowest NRMSE on celebA dataset.
This is likely due to higher randomness in celebrity faces because the effectiveness of
generative models can vary depending on the dataset used. Thus, when provided with a
small amount of training data with high randomness, image denoising models (DNCNN)
may be more effective than generative models.

We also tested the robustness of the leading algorithms in Table 3.2, by varying both
scaling factor a and sTD of Gaussian noise o. Fig. 3.7 and Fig. 3.8 illustate results, where
our AWFs algorithm had the highest ssim and lowest NRMSE. In Fig. 3.8, AWFs demon-
strated minimal variations in ssim and NRMSE metrics than poLPH as evidenced by the
smaller discrepancies in SSim (0.17 vs. 0.23) and NRMSE (12.6% vs. 18.2%) when ¢ varies
from o.75 to 1.5. Fig. 3.9 compares the convergence rate of AWFs vs. wrs for the Pois-
son and PG likelihood, respectively. Under a variety of noise levels, AwWFs consistently

converged faster than wFs in terms of number of iterations.
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FIG 3.6 — Reconstructed images by Gaussian, Poisson and Poisson-Gaussian log-
likelihood model with AWFS image prior. Tested on Histopathology dataset [2], celebA
dataset [65] and CT-density dataset. The bottom left/right subfigures correspond to the
zoomed in area and the error map for each image. o and o were set to 0.025 and 1, respec-
tively.

It is a known property of diffusion models that they can produce images with halluci-
nated features if the measurements are insufficiently informative. In the case of low-count
phase retrieval with serious corruptions of both Poisson and Gaussian noise, as is investi-
gated here, the measurement is highly corrupted and contains magnitude-only measure-
ments of the original signal. Thus, it may be difficult for the diffusion models to avoid
some otherwise realistic hallucinations if the data consistency is not strong enough to

guide the model away from such hallucinations. On the other hand, if the measurements
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TBL 3.2 — ssiM and NRMSE using Poisson Gaussian likelihood with different regulariza-
tion/image prior approaches. Results were averaged across 7 different noise levels by vary-
ing o € 0.02 : 0.005 : 0.035 in (3.2). wrs* runs the same number of iterations as AWFs

whereas wrs' runs more iterations until convergence.

Dataset Histopathology [2] CelebA [65] cT-Density
Methods SSIM NRMSE (%) SSIM NRMSE (%) SSIM NRMSE (%)
Unregularized 057 £0.18 | 28.9+9.0 | 0.42+0.10 | 21.8£9.1 | 0.24 £0.06 | 40.8 £9.5
RED-SD-SELF [5] | 0.66 £ 0.13 | 21.9 £4.5 | 0.60 = 0.09 | 15.9 £10.6 | 0.34 £ 0.04 | 28.1+4.1
PNP-ADMM [101] | 0.71£0.11 | 20.7 +4.2 | 056 +0.08 | 16.7+ 81 | 0.55+0.03 | 31.2 £ 27
TV regularizer 0.724+£0.11 | 182+39 | 0.64+0.07 | 144+£8.6 | 041+0.03 | 23.7£ 2.8
RED-SD [80] 0.76 £0.09 | 16.8 =3.6 | 0.69 +0.11 | 13.9+10.9 | 0.38 = 0.04 | 259 £ 4.0
PNP-PGM [45] 078 £0.11 | 16.54+ 45 | 0.74 = 0.14 | 13.5 £ 11.3 | 0.42 + 0.07 | 24.6 =44
DOLPH [87] 0.80 £0.06 | 16.0£29 | 0.71+0.11 13.7 £ 111 | 0.55£0.08 | 20.0 3.3
WFS* 0.76 £0.12 | 182+£55 | 0.63 +0.16 | 169 £11.8 | 0.53 £ 0.17 | 21.3 £ 76
wrs' 0.83£0.06 | 16.2+4.0 | 0.70+0.16 | 157 £11.8 | 0.74+0.13 | 173 £ 4.8
AWFs (Proposed) | 0.85 £ 0.05 | 15.4 +3.7 | 0.74 £ 0.15 | 14.8 £11.9 | 0.88 + 0.05 | 16.4 £ 3.7

are less corrupted, then the data consistency should be strong enough to avoid such hal-
lucinations. Fig. 3.10 provides examples of this for the CT image dataset via a comparison
of the reconstruction quality of the AwFs method over a range of count levels. With the
lowest scaling factor, e.g., @ = 0.02, the measurements were seriously corrupted with
noise, and the method may hallucinate some features. However, at higher count level, e.g.,
a = 0.05, there is enough information in the measurement to enforce consistency and
avoid noticeable hallucinations. We performed the same experiment twice with different
noisy initializations and all other parameters held equal to demonstrate robustness of the

method under different initializations.

3.2.4 Discussion

PR has a long-standing history in the field of signal processing and imaging. Pioneer-
ing works such as the error reduction and hybrid input-output algorithms by Gerchberg
Saxton [33] and Fienup [31] have been proposed to address this problem. These iterative
algorithms involve constraints imposed on evaluations between the image domain and
frequency domain. However, these methods have limitations in terms of the quality of
reconstructed images and their convergence remains uncertain [115]. Another approach
to solving PR problems is through compressed sensing and optimization techniques like

WF [12], matrix lifting [11, 10, 86], MM [77] and ADMM [63]. This work focuses on the wr
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FIG 3.7 — Comparison of ssiM and NRMSE varying scaling factor o € [0.02,0.035] and
sTD of Gaussian noise o € [0.25, 1.5] defined in (3.2).

algorithm due to being straightforward to incorporate with the b1 regularizer for the im-
age prior. The likelihood modelling of the noise statistics existing in the measurement
is also critical. Previous studies have primarily focused on modelling either Gaussian or
Poisson likelihood only, but in practical scenarios, both types of noise are often encoun-
tered. Therefore, this work contributes to a more practical perspective of addressing the
holographic pr problem by using a pG likelihood and incorporating state-of-the-art deep
learning image priors. In the case where the measurement is contaminated with Poisson
and Gaussian noise, the speedup in reconstruction is crucial, as the bottleneck of our al-
gorithm is in computing the PG likelihood. Additionally, though it is viable to perform a
large number of neural network evaluations to perform image reconstruction, it is unreal-
istic to compute a similarly large number of pG likelihoods. Thus, we perform acceleration
in wF algorithm following [52], which guarantees convergence to a critical point for the

Holographic PR problems.
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FIG 3.8 — Reconstructed images by porrH [87] and our proposed AwFs method under
different o values. Scaling factor o was set to 0.02 (defined in (3.2)).
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FIG 3.9 - Comparing AWFS vs. WFs with NRMSE vs. number of iterations under different
noise levels. The curves and shadows represent the mean and standard deviation, respec-
tively.

In our evaluation of three datasets, we consistently observed that the use of pG like-
lihood yielded superior performance compared to using either Poisson or Gaussian like-

lihood alone, as expected. Additionally, the results obtained from the cT-density dataset
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FIG 3.10 — Reconstructed images by the unregularized Poisson method (the second col-
umn) as well as with the Awrs method for different scaling factors « (third to fifth
columns). The top and bottom rows show reconstructions from different measurement
realizations.

were generally of lower quality than those from the other two datasets. This can be at-
tributed to lower average counts per pixel (many zero pixels near the image borders).

Using a DL image prior can be considered from two perspectives: training a denoiser
or training to learn the density distribution of images. In our work, we applied both ap-
proaches and observed that the effectiveness of these methods differed depending on the
dataset tested. Specifically, in the Histopathology dataset [2] and the cT-density dataset,
where the images share similar structures, the generative models performs better even
when trained with limited data. In the case of the CelebA dataset [65], which includes a
wide variety of celebrity faces, generative models did not exhibit as strong performance as
denoiser methods when trained on limited data. This is likely due to the fact that generat-
ing high-quality images is generally more challenging than removing noise from existing
images and may necessitate a larger training dataset. We have also noticed that the PNP-
ADMM method provided unsatisfying reconstruction quality, possibly attributable to the
non-zero duality gap and slow convergence for non-convex problems [106]. We plan to
investigate it further in the future.

The effectiveness of accelerated wr compared to vanilla wr is due to the non-convexity

of the pr problem. Although recent advances in geometric landscape analysis of PR can
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guarantee that all local minimizers are global even with random initialization [8], in prac-
tice the measurements are contaminated by noise so that many more measurements are
required for the cost function to have a benign geometric landscape.

Despite the promising results achieved with our proposed AwFs approach, there are
several limitations of our work. First, the approximate calculation of the infinite sum in
(3.3) is accurate but computationally expensive. Future work should seek ways to acceler-
ate this calculation while maintaining accuracy. Second, we did not implement and test
the accelerated wr applied on the diffusion posterior sampling method [19], for which the
network is fine-tuned from a pretrained state-of-the-art diffusion model. This approach
has the potential to advance current methods in PR problem and we will investigate it in
the future. Another limitation of the proposed method is that it has been demonstrated
on measurements that are based on simulations. To further demonstrate the efficacy of
the method in a real-world setting, future work should consist of evaluating the accuracy
of the methods when run on real measurement data. Finally, our experiments are limited
to real-valued images, however, our method can be extended to handle complex-values
images by splitting real and imaginary components into separate reconstruction routines
with different pretrained neural networks [119]. Addressing these limitations will be the

future direction of this work.

3.2.5 Conclusion

We proposed a novel algorithm based on Accelerated Wirtinger Flow and Score-based
image prior (AwFs) for Poisson-Gaussian holographic phase retrieval. With evaluation
on simulated experiments, we demonstrated that our proposed aAwrs algorithm had the
best reconstruction quality both qualitatively and quantitatively and was more robust to
various noise levels, compared to other state-of-the-art methods. Furthermore, we proved
that our proposed algorithm has a critical-point convergence guarantee. Therefore, our
approach has much promise for translation in real-world applications encountering phase

retrieval problems.
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CHAPTER 4

Poisson Inverse Problems in sPEcT Imaging'

4.3

4-4

Training End-to-End Unrolled Iterative Neural

Networks for sPEcT Image Reconstruction®

DblurDoseNet: A Deep Neural Network for speECT

Dosimetry Estimation and Resolution Recovery’

Efficient Super Resolution Network (ESR-Net) for

sPECT Image Reconstruction*

Shorter sPEcT Scans Using Self-supervised
Coordinate Learning to Synthesize Skipped

Projection Views

4.4.1 Motivation

SPECT imaging has had many advances [78]; however, one continuing limitation is that

SPECT acquisition is slow, especially under the low-count conditions encountered when

imaging therapy radionuclides, such as *°Y and ' ""Lu. These radionuclides are chosen for

the therapeutic properties of their alpha and beta emissions, hence do not have ideal prop-

erties for gamma-camera imaging. For example, the photon/gamma-ray yield is relatively

'This chapter is based on [56, 54, 62].
This section is based on [56].
3This section is based on [54].
4This section is based on [55].
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low, leading to low count conditions. Nevertheless, it is very desirable to perform both
therapy and imaging with the same radionuclide, even in very low-count applications.
With !""Lu where the 208 keV gamma-ray intensity is only 10%, it can take 15-30
mins per bed ( 40 cm axial) for sPECT on standard gamma-camera systems following
radiopharmaceutical therapies (RpTs) such as "' LU-DOTATATE and !""Lu-psma [83, 84].
For rRPTs involving alpha-emitters, such as Ac-225-PsMaA, acquisition times of up to 1 hour
have been proposed [26]. This is because both the administered activities and the gamma-
ray yields are very low. sPECT under low-count conditions is particularly challenging
when multiple beds are needed to encompass metastases and critical organs throughout
the body. For example, in psma therapy for metastatic castration-resistant prostate cancer
(MCRPC), SPECT imaging may require 3-5 bed positions to include all critical organs such
as lacrimal glands, salivary gland, bone marrow, and kidneys, as well as lesions that can be
throughout the body [44, 103]. Such a procedure demands a significantly greater amount
of camera time, which can not only lead to patient discomfort, but can also increase motion
artifacts. Additionally, in many facilities, camera availability is limited [103, 85, 71, 25, 17].
To overcome these challenges, a shorter acquisition time is preferrable by taking ei-
ther fewer projection views or shorter acquisition time per view. These strategies pose
additional challenges due to either the missing (skipped) view angles or the increased im-
age noise [67]. Numerous algorithms have been proposed with a focus on denoising the
reconstructed images from noisy projections to improve image quality [89, 1, 64, 75, 94, 95,
114]. In contrast, the approach of synthesizing the missing projections [82] has been rela-
tively unexplored. Most prior studies have employed deep learning techniques to learn the
relationship between one projection and its neighboring views, often relying on ground
truth data for training purposes. For instance, Rydén et al. [82] used a deep convolutional
U-Net trained to generate synthetic intermediate projections. Meanwhile, Li et al. [53] in-
troduced a network architecture called LU-Net that integrates Long Short-Term Memory
network [38] and U-Net to understand the transformation from sparse-view projection
data to full-view data. Chen and Zhou [15] presented a cross-domain method using sPECT
images predicted in the image domain as reference for synthesizing full-view projections
in the sinogram domain. These approaches are reported to be effective, but they are all
based on supervised learning methods that require a sufficient amount of paired data for
training. However, in many cases, obtaining enough paired ground truth data for train-
ing is challenging or even infeasible. This difficulty is especially true in the case of post-
therapy imaging for verifying uptake or dosimetry following rpTS because such imaging
is typically not part of routine clinical practice. On the other hand, self-supervised learn-

ing, which does not require separate training labels and instead learns from each scan
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itself, has the potential to overcome the limitations of supervised learning in such scenar-
ios.

The aim of this research was to reduce sPECT acquisition time by reducing the re-
quired number of measured projection views while maintaining image quality by incor-
porating synthetic projections generated by deep neural networks. We implemented a
multi-layer perceptron (MLP) and trained it to generate skipped SPECT projection views
through self-supervised coordinate learning [97]. We evaluated the performance of the
proposed method both qualitatively and quantitatively in phantom studies and in patients

imaged after !""Lu DOTATATE therapy and !""Lu psma therapy.

4.4.2 Materials and Methods

4.4.2.1 Phantom Study

We used an elliptical phantom with six hot sphere inserts of volumes 2,4,8,16,30,114mL.
These “hot” spheres (having the same !""Lu activity concentration of 0.22 MBg/mL) are
placed in a “warm” background (0.035 MBq/mL) to achieve a sphere-to-background ratio
of 6.3:1. The sphere volumes of interest (vois), corresponding to the physical size, were

defined on the cT images.

4.4.2.2 Patient Studies

For the patient studies, we used sPECT/CT scan data from 11 patients imaged after !7"Lu-
DOTATATE therapy for neuroendocrine tumor and from 6 patients imaged after "' Lu-
PsMA-617 therapy for mcrpc with the approval of University of Michigan Institutional
Review Board (IRB) for retrospective analysis. We defined organs of interest (kidneys
for poTATATE therapy, and kidneys, lacrimal glands, parotid glands, and submandibu-
lar glands for psmaA therapy) using deep learning-based methods available within MIM
Software. A radiologist manually defined the lesions (78 in total, volume ranging from 2

to 250 mL) as described previously [27].

4.4.2.3 SPECT/CT Acquisition

All scans were acquired on a Siemens Intevo Bold sPEcT/cT with a 5/8" crystal equipped
with medium-energy collimators. Acquisition parameters included 120 views, with 6o
views per head, a 20% photopeak window centered at 208 keV, and two adjacent scat-
ter windows of 10% width each. The phantom study used a prolonged acquisition of 196

sec/view to achieve count levels similar to that encountered in patient imaging after !""Lu
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therapy. The patient images were acquired under the standard protocols used in our clinic.
1"TLU-DOTATATE SPECT images were acquired for a single bed position at day 2 or day 4
after the cycle 1 administration of 7.4 GBq using an acquisition time of 25 seconds per
view (total scan time of 25 min). The !""Lu-psMA sPECT images were acquired with two
bed positions at day 2 or day 3 after the cycle 1 administration of 7.4 GBq with an acqui-
sition time of about 17 seconds per view per bed (total scan time of about 34 min). The
projection view matrix size was 128 X128, with a pixel size of 4.8x4.8mm. The cT images
were acquired in low-dose mode (120 kVp; 15 — 80 mAs) under free breathing conditions,

with a matrix size of 512512 and pixel size of 0.98 X 0.98mm.

4.4.2.4 Self-supervised Coordinate Learning

Given the limited amount of data, we focused on a self-supervised learning approach,
rather than supervised methods for this study. Our method draws inspiration from com-
puter vision: the neural radiance field (NERF) approach that models complex 3D scenes
through a volumetric scene function [72]. NERF fundamentally uses neural networks to
map 3D spatial coordinates to radiance values. In a similar vein, we developed a MLP, com-
prising 12 hidden layers with 256 neurons each, to synthesize missing projection views in
SPECT imaging. Fig. 4.1illustrates the input to our MLP: 5-dimensional coordinates for each
pixel in sSPECT projection views. These coordinates consist of pixel position (i, j), the sine
and cosine of the view angle and radial position (to accommodate noncircular orbits). To
enhance the representation of the continuous measurement field, we upscaled the original
projection images by a factor of two with the nearest-neighbor resizing method. Conse-
quently, the network input size for each projection view becomes (256 X 256) x 5. The train-
ing target consists of measured counts, with a size of 256 x256x1 for each view. During
inference, the model is fed the coordinates of the missing SPECT projections and predicts
the corresponding counts both for the main acquisition window and adjacent scatter win-
dows. Our method provides flexible adaption to different numbers of projection views,
corresponding to various down-sampling factors (DF). For instance, when trained on 30
measured views and synthesizing 9o views, it achieves a 75% reduction in scan time (DF=4).

Additionally, in this study, we also tested our method for prF=2 and DF=8 cases.
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FIG 4.1 - Workflow of the proposed sPECT projection synthesis method. The training pro-
cess (top) involves inputting 5-dimensional coordinates into the MLP, with a user-defined
loss function guiding the network to learn from the patient-specific training targets: mea-
sured counts in sparse views. During testing (bottom), the trained network receives the
coordinates of missing views and outputs the predicted counts.

4.4.2.5 Training and Optimization

For each scan, we optimized the MLP weights by minimizing the Huber loss function (d=1),
which is given as
sa?, ifla] <6
Ls(a) = : (4.1)
6 (la| — 16), otherwise
We employed the ADAM optimizer [47] with an initial learning rate set at o0.001 and a
reduce-on-plateau scheduler to minimize the loss function. We used coordinates corre-
sponding to 20% of all pixels from the full projection views as per-patient validation data.
The patient-specific model was selected at the lowest validation loss out of 200 training
epochs. We used a batch size of 10,000 out of 256 X 256 X NMpeq X Nyiew projection pixel

coordinates.

4.4.2.6 SPECT Reconstruction

In this study we performed OoSEM SPECT reconstructions (DOTATATE data matrix size:
128 X128 X 79 and 2-bed psmA data matrix size: 128 X128 X158, both with voxel size in mm:
4.8% 4.8 4.8) with 6 subsets and 16 iterations using in-house software (available at: ht tps:
//github.com/JeffFessler/mirt). No post-processing filter was applied. Scatter cor-
rection used a triple energy window method, while the depth-dependent attenuation cor-
rection used the standard cT-to-density calibration curve. The point spread function for
depth-dependent collimator-detector response modeling was simulated with mc [66] us-

ing a point source in air and fitted with Gaussian curves.
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4.4.2.7 Evaluation

SPECT image quality was evaluated for four distinct reconstruction methods: 1) Full recon-
struction using all 120 measured projections (full recon). 2) Partial reconstruction using a
certain DF of the measured projections (partial recon). 3) Linear interpolation reconstruc-
tion, where a certain DF of projections were measured, and the remaining projections were
generated through linear interpolation (LinInt recon). 4) NERF reconstruction, where a cer-
tain DF of projections were measured, and the remaining were mLp-predicted synthetic
projections (NERF recon).

We quantified reconstruction performance using multiple evaluation metrics, includ-
ing NRMSD, AR, ARNR, CNR and RCNR. In the phantom study, the uniform “warm” region
served as the background (BKG). For the clinical patient study, we selected a homoge-
neous region within the lung as the BKG. The noise level was calculated as the standard
deviation of voxel counts within this BKG, denoted as STDgk¢. These evaluations pro-
vide an assessment of the synthesized projection and reconstructed image compared to a
reference image: the true activity map for phantom data and the osEm reconstruction us-
ing all 120 measured projections (i.e., full recon) for patient data. Definitions of the above

metrics are given as follows:

AR — mean counts of reconstrl%cFion v‘vit%lin VOI, ARNR — AR 7
mean counts of true activity within vor STDgkq
mean of vor — mean of BKG CNR. ;
CNR — ’ RCNR _ sparse View recon >< 100(7 .
STDBKG CNRqu recon !

4.4.3 Results

4.4.3.1 Synthesized Projections

Table 4.1 compares the performance of linearly interpolated projections against NERF-
synthesized projections, summarizing the NRMsD values across various DFs for phantom
studies and patient studies. The results consistently demonstrate that the NERF-synthesized
projections outperform linearly interpolated projections, exhibiting lower NrRMsD values
in both phantom and patient studies.

Visually, NERF-synthesized projections appear smoother than their measured counter-
parts. Fig. 4.2 displays the measured (Fig. 4.2 (a)) and synthesized projections for a repre-
sentative PsMA patient. Close examination of the intensity profiles across the lacrimals
reveals notable differences: the NERF-synthesized projection exhibits two peaks (corre-

sponding to high uptake in left and right lacrimals as expected with psma), more closely
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Phantoms DOTATATE Patients | pPsmA Patients

NERF | Linear | NERF Linear NERF | Linear
pF=2 | 5.9% | 9.0% | 16.9% 23.4% 17.5% | 24.6%
pr=4 | 6.2% | 9.5% | 17.5% 25.5% 18.4% | 27.4%
pr=8 | 7.5% | 11.1% | 18.8% 30.4% 23.7% | 34.1%

TBL 4.1 — NRMsD (relative to measured projections) comparisons between NERF-
synthesized projections and linearly interpolated projections across different DFs for
phantom studies and patient studies (average across 11 DOTATATE studies and 6 psma
studies).

aligning with the pattern observed in the measured projection, while the linearly interpo-

lated projection presents four peaks due to angular interpolation.

15

10

5

0
0

Distances (mm)

(a) Measured projection (b) Linearly Interpolated projection (c) NeRF-synthesized projection (d) Line profile across lacrimal glands

FIG 4.2 — Comparison of measured and synthesized projections for a patient following
1""Lu-psma therapy. (a), (b), and (c) show measured projection, linearly interpolated pro-
jection, and NERF-synthesized projection, respectively. The images and profile compari-
son across lacrimal glands show two hot spots/peaks in the NERF synthesized projection
(green line) corresponding to left and right lacrimals, closely resembling the profile of the
measured projection (red line), whereas the corresponding results for the linear interpo-
lation shows 4 peaks due to distortions.

TBL 4.2 — Comparing synthesized projections using linear interpolation, supervised learn-
ing [82] and our proposed method. Results were based on 9 patient scans.

Method | Linear Interpolation | U-Net [82] Ours
NRMSE (%) 14.0+3.0 17.3+1.9 | 11.1+2.3

4.4.3.2 Phantom Reconstruction Results

Consider the DF=4 scenario as an illustrative case. Fig. 4.3 compares four reconstructions
with the true activity map. Although each reconstruction method exhibits structural sim-

ilarities with the true activity, the partial recon is noticeably noisier than its counterparts.
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Quantitative comparisons, presented in Fig. 4.4, plot AR to noise curves for various spheres
at DF=2,4 and 8. Clearly, the NERF recon outperforms both the partial recon and LinInt
recon, delivering results that most closely parallel the full recon through various num-
bers of iterations of the osem algorithm. Note that even for the full reconstruction, AR is
degraded (AR < 1) because of partial volume effects [79].

Moreover, the noise level in all sparse-view reconstructions increases as the DF be-
comes larger. But the NERF reconstruction consistently achieved highest activity recover-
ies for all six lesions at the same noise level. At pr=8, detailed in Fig. 4.4 (c), the partial
reconstruction attained higher activity recovery for small lesions, at the expense of sub-
stantially increased noise level, while the NERF reconstruction remains superior for larger

lesions. For all sizes of lesions and DFs, the NERF recon matched the activity recovery of

the LinInt recon while maintaining a significantly lower noise level.

CNTs
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FIG 4.3 — Visual comparison of (a) phantom true activity, (b) full recon, and (c) NERF recon,
(d) LinInt recon, (e) partial recon for pr=4. All images are in the same color scale.
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FIG 4.4 — AR to noise curves for sphere volumes ranging from 2 to 114 mL for the full recon
and across DFs of 2, 4, and 8 (a to c). Distinct markers are consistently used to represent
each sphere volume across all subfigures. The comparison illustrates the variations in AR
and noise levels across four reconstruction methods: full recon, NERF recon, LinInt recon,

and partial recon, for different sphere sizes.
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4.4.3.3 Patient Reconstruction Results

Fig. 4.5 and Fig. 4.6 show the coronal Maximum Intensity Projections (MIPs) of an example
patient image following DOTATATE and PsMA therapy, respectively, derived from four
different reconstruction methods at various DFs. In both studies, the LinInt recons exhibit
noticeable artifacts due to angular interpolation, more pronounced at higher prs. This
effect is particularly evident in the psma study for organs like the lacrimal, parotid, and
submandibular glands at prF=4 and 8, substantially affecting the structural clarity of the
SPECT images. Conversely, partial recons became noisier with increasing Drs, making it
challenging to discern small hot spots from the background. However, the NERF recons
retained a more accurate representation of activity distribution, closely resembling the
full reconstructions, while maintaining a balanced noise level.

Quantitatively, the NERF recon yielded the highest average RCNR in the DOTATATE
study, as shown in Table 4.3, for both lesion and kidney vois across all prs. Similarly, in
the psMA study, the NERF reconstruction had higher average rRcNR for all vois, as shown
in Table 4.4, across all DFs. The limitation of LinInt recon is particularly evident in the
lacrimal glands, which are of very small volume (about 0.4 mL) and exhibit exceptionally

low RCNR values.

DF=2 DF=4 DF=8
NERF LinInt Partial NERF LinInt Partial NERF LinInt Partial
Recon Recon Recon Recon Recon Recon Recon Recon Recon

Lesion 88.6%  82.5% 82.7% 87.9%  68.7% 68.7% 73.5%  43.9% 48.2%
Kidney 92.6%  85.8% 84.5% 88.0%  73.1% 67.0% 76.5%  51.3% 48.8%

TBL 4.3 — Average RCNR values of the NERF recon, the LinInt recon, and the partial recon
across all eleven DOTATATE patient studies, benchmarked against the full recon, whose
RCNR is standardized at 100%.

4.4.4 Discussion

The field of machine learning, particularly in the domain of D1, is rapidly growing. Com-
pared to other medical imaging modalities, DL applications to SPECT imaging are limited,
perhaps due to the challenges of low-count scenarios of gamma-camera imaging. Previ-
ous works have demonstrated the effectiveness of using DL to generate missing SPECT
projections views with convolutional neural networks, particularly, U-Net [81]. However,
the data-intensive nature of supervised DL makes it less feasible for sPECT imaging, where

datasets are usually limited, e.g., for our study, only tens of patient data are available, and
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FIG 4.5 — Coronal MIPs of sPECT reconstructions corresponding to a DOTATATE patient
study using four reconstruction methods (columns) and three DFs (rows). Images are dis-
played with gamma correction with enhanced contrast levels to emphasize the blurring
artifacts present in the LinInt recon and the noise present in the partial recon, especially
visible at higher DFs.

DF=2 DF=4 DF=8
NERF LinInt Partial NERF LinInt Partial NERF LinInt Partial
Recon Recon Recon Recon Recon Recon Recon Recon Recon
Lesion 83.8% 79.8% 80.7% 78.4% 70.7% 68.5% 65.7% 55.7% 54.9%
All Organ ROIs | 84.7% 75.7% 80.9% 78.4% 56.9% 67.3% 63.2% 31.0% 50.8%
Kidney 84.8% 79.9% 80.3% 80.1% 69.6% 67.6% 65.8% 44.2% 51.3%
Lacrimal 83.6% 63.6% 80.4% 77.5% 29.9% 68.6% 57.2% 10.2% 47.9%
Parotid 84.5% 79.3% 80.9% 79.1% 63.4% 66.0% 67.6% 34.7% 52.0%
Submandibular | 85.6% 79.7% 81.8% 77.1% 64.0% 66.9% 62.2% 34.6% 51.7%

TBL 4.4 — Average RCNR values of the NERF recon, the LinInt recon, and the partial recon
across all six psmaA patient studies, benchmarked against the full recon, whose RCNR is
standardized at 100%.

it would be difficult to obtain hundreds or thousands of patient datasets for applying su-

pervised learning methods. Furthermore, the change of camera-specific parameters, for
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FIG 4.6 — Coronal MIPs of sPECT reconstructions corresponding to a PSMA patient study
using four reconstruction methods (columns) and three DFs (rows). Images are displayed
with gamma correction with enhanced contrast levels to emphasize the blurring artifacts
present in the LinInt recon and the noise present in the partial recon, especially visible at
higher DrFs.

example, the crystal thickness of gamma-cameras and body contour orbits, may also in-
fluence the performance of supervised learning approaches. Unlike supervised learning,
self-supervised learning methods derive insights directly from the current image itself
without the need for labeled datasets, making them inherently adaptable and robust to
variations in testing conditions. Thus, this thesis focused on a self-supervised learning
method.
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With evaluation both on phantoms that covered clinically relevant conditions and pa-
tients who underwent !”"Lu DOTATATE and psmA therapy in our clinic, we have demon-
strated that our NERF recon, based on self-supervised coordinate-based learning, effec-
tively compensates for image quality degradation under scenarios of sparse view acquisi-
tion. Considering both the reduction in acquisition time and quantitative accuracy/noise,
a DF=4, appears to be a good compromise. In the patient studies, at a DF of 4, the NERF
recon achieved cNRs of about 80% and higher for all organs and lesions while the other
sparse view methods achieved only about 60 to 70% relative to the full reconstruction
(Table 4.4, Table 4.3). Despite these promising outcomes, we observed reduced activity
recovery in the NERF recon for smaller spheres (<=4 mL) in the phantom reconstruction
at higher DFs, compared to the other three reconstructions (Fig. 4.4). This limitation could
arise from the neural network’s tendency to smooth over areas in low-count sPECT images
due to high noise levels, leading to averaged voxel values from high noise variances. De-
spite the minor loss in recovery (also observed in the LinInt recons), the NERF recons show
clearly improved cNR compared with the partial recons. Additionally, at a high DF of 8,
the mLP faced challenge in accurately learning the representation of the continuous mea-
surement field due to a substantial reduction in training data, particularly impacting finer
textures that fluctuate in the measurement projections [97], contributing to reduced activ-
ity recovery in small lesions. Future research could explore the integration of variational
inference or generative models to diversify the sampling process, potentially mitigating
this smoothing effect and enhancing the model’s fidelity in capturing fine details.

In a previous study investigating DL to synthesize missing projection, Mc-based re-
construction was used [82]. Although the attenuation, scatter, and collimator-detector re-
sponse can be included simultaneously and accurately in the mc-based forward projection,
this requires the simulation of a large number of photon histories, which is computation-
ally expensive and therefore is less practical for routine clinical application. Instead, we
used a reconstruction protocol similar to what is used in the clinic: a publicly available
linear forward-backward system model with triple energy window scatter correction [24],
which is a widely accepted and practical approach for !""Lu spECT reconstruction.

The idea of NERF was to render photorealistic novel views of scenes with complicated
geometries and appearances by representing a scene as a continuous function that out-
puts the radiance emitted in the coordinate space. To learn the continuous representation,
a MLP is trained by inputting the coordinate of the scene and the training targets are the
three-channel RGB colors. In this work, we conducted a similar training process where
the targets were defined as single-channel sPECT projection counts. Moreover, the nature

of coordinate-based learning works on the projection domain and hence is not restricted
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to a specific image reconstruction method but is compatible with many methods includ-
ing those based on MBIR or other methods such as plug-and-play (36) approaches. MBIR
methods often handle a complete set of projection views but with fewer counts per view.
Such methods can improve image quality and reduce noise by incorporating appropriate
regularizers and priors; however, choosing the optimal regularizers and regularization pa-
rameters remains a challenge. In contrast, our method is tuning-free, as evident from the
good performance in two different therapies where the activity distribution in the body
is substantially different.

Although our research was initially focused on ""Lu spEcT imaging, we expect that
our coordinates learning-based self-supervised method could be adapted for use in other
low-count applications. This includes pure 3~ -emitters, like “°Y, characterized by a low
yield of bremsstrahlung photons for sPECT imaging [73], and a-emitters, like Ac-225 that
have low gamma-ray yields [26]. Both present inherent low-count imaging challenges
that could potentially benefit from our approach. Furthermore, our method, which allows
for skipping projection views could benefit diagnostic sPECT imaging by enabling admin-
istration of lower activities, therefore supporting low-dose sPECT protocols that reduce

radiation exposure to patients with minimal compromise to image quality.

4.4.5 Conclusion

This study addresses the challenge of extended sPECT imaging durations under low-count
conditions, as encountered in '""Lu spECT imaging, by developing a self-supervised coor-
dinate learning approach that efficiently synthesizes skipped sPECT projection views with-
out separate training data. The proposed method enables a significant reduction in spPECT
acquisition time by allowing for skipping projection views and using a MLP to synthesize
skipped projections, while preserving image quality, as indicated by improved NRMsD in
projections, and ARNR and RCNR in reconstructions compared with other methods for
sparse acquisitions. Unlike deep learning-based approach, this self-supervised method ad-
dresses the challenge of limited training data availability commonly encountered in clin-
ical settings. The feasibility for reduction in acquisition time demonstrated in this work
is particularly relevant for imaging under low-count conditions and for protocols that

require multiple-bed positions.
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CHAPTER 5

Discussion and Future Works

Poisson inverse problems are an intriguing and flexible category of mathematical and com-
putational difficulties that have a wide range of applications in science and engineering.
These problems revolve around the task of reconstructing unknown parameters or func-
tions based on measured data that adhere to Poisson MLE. The allure of Poisson inverse
problems lies in their capacity to reveal concealed information from noisy or incomplete
observations, thus making them immensely valuable in various fields including medical
imaging, environmental science, materials characterization, and astrophysics. This thesis
focuses on two specific applications of Poisson inverse problems, namely phase retrieval
and sPECT imaging. Thus far, we have presented several effective algorithms for resolving
these types of Poisson inverse problems. This chapter discusses the challenges associated
with these applications and explores potential future directions that can be investigated

based on the research findings presented in this PhD thesis thus far.

5.1 Learning on “SmArge” data
5.2 Generative Al

5.3 Denoising Projections with Unsupervised

Learning
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CHAPTER 6

Conclusion

This thesis demonstrates algorithms that aim to solve Poisson inverse problems in phase
retrieval and sPECT imaging. For phase retrieval, our contributions are novel algorithms
[60, 61, 59] that have faster convergence speed and lead to improved image reconstruction
quality. For example, we propose modifications to the wr algorithm. Our method deter-
mines the step size based on observed Fisher information and incorporates a quadratic
majorizer into our majorize-minimize approaches. We demonstrate that our methods are
effective and exhibit favorable convergence properties [61]. Furthermore, we explore cases
involving measurements affected by a combination of Poisson and Gaussian noise. We pro-
pose the use of an innovative technique called "AWFS" which uses accelerated wr with
a score function as a generative prior. Theoretical analysis is conducted to showcase the
critical point convergence guarantee of our algorithm. Simulation results demonstrate
that our approach enhances reconstruction quality in terms of both visual perception and
numerical assessment.

For spEcT imaging, we focus on DL solutions [56, 54, 62]. We develop a Julia tool-
box [56] enables efficient modeling of spEcT forward-backward projectors with parallel
computing and minimized memory allocations. This facilitates effective backpropagation
during deep learning regularized iterative algorithm training, resulting in higher qual-
ity reconstructions compared to non-end-to-end methods. Moreover, we propose Dblur-
DoseNet [54], a deep neural network for joint dosimetry estimation and image deblur-
ring after sPECT reconstruction. It accurately estimates dose-rate distribution and com-
pensates for sPECT resolution effects. Evaluations on phantoms and patients show that
DblurDoseNet outperforms conventional dosimetry methods while being fast enough for
real-time clinical use in radionuclide therapy dosimetry. Additionally, we propose a neural
network with unsupervised learning to predict missing SPECT projections. Our method
aims to decrease acquisition time by obtaining only a subset of all projections. Our method
outperforms linear interpolation techniques used to predict missing projection views in

terms of the achieved image reconstruction quality [62].
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As mentioned in Chapter 5, there are several potential avenues for further research.
These include investigating transfer learning techniques like finetuned sam for tumor
segmentation in SPECT images, exploring unsupervised methods for scatter correction in
SPECT imaging, and incorporating PET-guided diffusion into the reconstruction of spECT
images. Similar methods can be employed to address 3D phase retrieval problems as well.
We will be excited to see explorations on these research directions and believe they have
the potential to improve the accuracy and efficiency of algorithms for solving Poisson

inverse problems.
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APPENDIX A

Proof of the Proposed Improved Curvature

Formula
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APPENDIX B

Uniform Cramér-Rao Lower Bound Analysis

for Phase Retrieval Algorithms

This appendix' derives and analyzes the UCRLB for the phase retrieval problem, and then
compares the bias-variance trade-off between phase retrieval algorithms (e.g., Wirtinger
flow, Gerchberg-Saxton, phaselift, MM and ADMM) that were derived from MLE where the
measurements follow ii.d. Gaussian distribution. We also consider regularizers that ex-
ploit the assumed properties of the latent signal, e.g., /2 norm and ¢; norm (approximated
by the Huber function) that corresponds to the sparsity of finite differences (anisotropic
TV) or of the detailed coefficients of a discrete wavelet transform. Simulation results show
that many phase retrieval algorithms can be biased so that the classical crLB fails to bound
their variance. Regularized algorithms that better approximate the properties of the true
signal have better bias-variance trade-offs (when compared to ucrLB) and lower recon-

struction error.

IThis work is based on [57].
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APPENDIX C

Proof of the Critical Point Convergence for
the “AWFS” Algorithm

This appendix proves the “AWFS” algorithm in Chapter 3 has a critical point convergence
guarantee.
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